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Abstract. We consider a compact orientable hyperbolic 3-manifold
with a compressible boundary. Suppose that we are given a sequence of
geometrically finite hyperbolic metrics whose conformal boundary struc-
tures at infinity diverge to a projective lamination. We prove that if this
limit projective lamination is doubly incompressible, then the sequence
has compact closure in the deformation space. As a consequence we
generalise Thurston’s double limit theorem and solve his conjecture on
convergence of function groups affirmatively.
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1. Introduction

It is one of the most important topics in the theory of Kleinian group
to study the topological structure of their deformation spaces. The quasi-
conformal deformation space of a geometrically finite Kleinian group G is
fairly well understood by virtue of the work of Ahlfors, Bers, Kra, Marden
and Sullivan, and others. To put it more concretely, for a geometrically
finite Kleinian group G, it is known that there is a ramified covering map
from the Teichmüller space of ΩG/G to the quasi-conformal deformation
space of G, where ΩG denotes the region of discontinuity of G. On the
other hand, in general it is difficult to understand how these coordinates on
Teichmüller space relate to the full deformation space. In other words, it is
a challenging task to determine which divergence sequence in Teichmüller
space correspond to convergent sequences of Kleinian groups.

The first example of such a sufficient condition for convergence is the result
of Bers in [Ber], which shows that the space of quasi-Fuchsian groups lying
on a Bers slice is relatively compact. On the other hand, in the process of
proving the uniformisation theorem for Haken manifolds, Thurston proved
the double limit theorem for quasi-Fuchsian groups and the compactness
of deformation spaces for acylindrical manifolds, in [Th1] and [Th2] respec-
tively. These are generalised to give a convergence theorem for general freely
indecomposable Kleinian groups in Ohshika [Oh1] and [Oh2]. The conver-
gence in the deformation spaces for freely decomposable groups is more
complicated and is harder to understand.

In [ThB], Thurston asked how one might generalise the double limit the-
orem to the setting of Schottky groups. This question was made into a more
concrete conjecture using the notion of Masur domain, and then was gener-
alised to function groups. Masur introduced in [Ma] an open set in the pro-
jective lamination space of the boundary of a handlebody on which the map-
ping class group of the handlebody acts properly discontinuously. This open
set is what we call the Masur domain nowadays. This notion is generalised
by Otal [Ot1] to the exterior boundary of a compression body. Thurston’s
conjecture is paraphrased as follows: For a sequence in Teichmüller space
converging in the Thurston compactification to a projective lamination lying
in the Masur domain of the exterior boundary of a compression bodyM , the
corresponding sequence of convex cocompact representations in AH(M) has
a convergent subsequence. Otal in [Ot2] first proved that Thurston’s con-
jecture is true for rank-2 Schottky space provided that the limit lamination
is arational, that is, any component of its complement is simply connected.
Canary in [Ca] proved the conjecture for some special sequences in Schottky
space. Ohshika in [Oh4] proved the conjecture for function groups which are
isomorphic to the free products of two surface groups under the same as-
sumption that the limit lamination is arational. The strongest result in this
direction under the same assumption on the limit lamination was given by
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Kleineidam and Souto in [KlS] without any other assumption on compres-
sion bodies. Our main result, Theorem 1 yields a proof of this conjecture of
Thurston in full generality without any extra assumption and generalises it
to a slightly larger set than the Masur domain.

We need to introduce some notions and notations to state our main the-
orem. Consider a compact irreducible atoroidal 3-manifold M with bound-
ary. By Thurston’s uniformisation theorem for atoroidal Haken manifolds,
there is a representation ρ0 : π1(M) → Isom(H3) such that H3/ρ0(π1(M))
is homeomorphic to Int(M) by a homeomorphism that induces ρ. Such a
representation is said to uniformise M . Any quasi-conformal deformation
of ρ0 also uniformises M . By the Ahlfors-Bers theory, when ρ0 is convex-
cocompact, the space QH(ρ0) of quasi-conformal deformations of ρ0 up to
conjugacy by elements of Isom(H3) is parametrised by the Teichmüller space
of the boundary of M . More precisely, there is a (possibly ramified) cov-
ering map, called the Ahlfors-Bers map T (∂M) → QH(ρ0) whose covering
transformation group is the group of isotopy classes of diffeomorphisms of
M which are homotopic to the identity.

The space QH(ρ0) is a subspace of the deformation space AH(M). This
deformation space AH(M) is the space of discrete faithful representations
ρ : π1(M) → Isom(H3) up to conjugacy by elements of PSL2(C). It is
endowed with the quotient of the compact-open topology which is also called
the algebraic topology. In the main theorem, we shall consider sequences of
representations given by sequences in the Teichmüller space whose images
under the Ahlfors-Bers map diverge inQH(ρ0) and give a sufficient condition
for their convergence in AH(M).

Thurston introduced in [Th3] the notion of doubly incompressible curves.
This can be extended to measured geodesic laminations in the following way.

We say that a measured geodesic lamination λ ∈ ML(∂M) is doubly
incompressible if and only if there exists η > 0 such that i(λ, ∂E) > η for
any essential annulus or disc E in M . We denote by D(M) ⊂ ML(∂M) the
set of doubly incompressible measured geodesic laminations and by PD(M)
its projection in the projective lamination space PML(∂M). It is not hard
to see that D(M) contains the Masur domain (see [Le2]). Our main theorem
is the following.

Theorem 1. LetM be a compact orientable irreducible atoroidal 3-manifold
with boundary and ρ0 : π1(M)→PSL(2,C) a convex cocompact representa-
tion that uniformises M . Let (mn) be a sequence in the Teichmüller space
T (∂M) that converges in the Thurston compactification to a projective mea-
sured lamination [λ] contained in PD(M). Let q : T (∂M) → QH(ρ0) be the
Ahlfors-Bers map, and suppose that (ρn : π1(M)→Gn ⊂ PSL(2,C)) is a
sequence of discrete faithful representations corresponding to q(mn). Then
(ρn) has an algebraically convergent subsequence in AH(M).
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It should be noted that our result here is closely related to the Bers-
Thurston density conjecture. This conjecture states that every finitely gen-
erated Kleinian group is contained in the boundary of the quasi-conformal
deformation space of geometrically finite Kleinian groups without rank-1
maximal parabolic subgroups. A special case has been proved by Bromberg
and Brock-Bromberg [Brom, BB] using cone manifold deformation theory.
Bromberg and Souto announced a complete prof of the general case using
this approach and, in particular, avoiding an appeal to the ending lamination
theorem ([BS]). The general case can be proved by combining the resolution
of the tameness conjecture by Agol and Calegari-Gabai, the ending lamina-
tion conjecture by Brock-Canary-Minsky, and from some convergence the-
orems due to Thurston, Ohshika, Kleineidam-Souto and Lecuire, together
with some topological argument due to Ohshika and Namazi-Souto(See [Ag],
[CG], [Th3], [Oh4], [KlS], [Le2], [Min], [Oh5] and [NaS]).

Theorem 1 is a corollary of Theorem 2 below by the following argu-
ment. By Theorems of Thurston [Th2] and Canary [Ca], the convergence
of (mn) to [λ] implies that there is a sequence of weighted multi-curves
(λn ∈ ML(∂M)) such that lρn(λn) tends to 0 and that the sequence (λn)
converges in ML(∂M) to a measured geodesic lamination whose projective
class is [λ]. Since λ lies in D(M), Theorem 1 is derived from the following
theorem, whose proof occupies the main part of this paper.

Theorem 2. Let (ρn : π1(M) → Isom(H3)) be a sequence of convex co-
compact representations that uniformise M and let (λn) ⊂ ML(∂M) be a
sequence of measured geodesic laminations such that (lρn(λn)) is a bounded
sequence and that (λn) converges in ML(∂M) to a measured geodesic lami-
nation λ ∈ D(M). Then the sequence (ρn) has a compact closure in AH(M),
namely, any subsequence contains an algebraically convergent subsequence.

We prove Theorem 2 by contradiction using the following arguments. We
can first assume that λn is a weighted simple closed curve since the set of
weighted simple closed curves is dense in ML(S). Assuming that no sub-
sequence of (ρn) converges, we use Culler-Morgan-Shalen compactification
of the character variety ([MoS1]) and ideas of Otal [Ot3] to construct a se-
quence of train tracks τn carrying λn and maps fn : τn → H3/ρn(π1(M)) so
that some parts of τn are mapped to long quasi-geodesic paths while the rest
is mapped to relatively short paths. Then we construct a simplicial annulus
joining fn(λn) to its geodesic representative λ∗n ⊂ Mn = H3/ρn(π1(M)).
By Gauss-Bonnet Formula, this annulus is not large enough to cover the
difference in length between fn(λn) and λ∗n. It follows that fn(λn) nearly
backtracks along some long paths. We use this backtracking to construct a
sequence of annuli whose boundary converges to a sublamination of λ. This
contradicts the double incompressibility of λ.

We state Theorem 2 under the assumption that ρn is convex cocompact
but it should hold without this assumption, namely when ρn is discrete and
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faithful. The presence of parabolics, in particular rank 2 cusps, would add
extra technicalities to the proof that we wished to avoid. The presence of
geometrically infinite ends would require very little change. In the same
spirit, we state Theorem 1 under the assumption that ρn is convex cocom-
pact but it should hold under the assumption that it is geometrically finite
and minimally parabolic.

Plan of the paper:

In Section 2, we explain background materials and quote necessary results,
some with proofs.

In Sections 3 and 4 we explain the construction of τn and hn. In Section 3,
we show that for a doubly incompressible measured lamination λ and a small
minimal action of π1(M) on R-tree T , each component of λ is either realised
in T , or is carried by train tracks with arbitrarily short branches in the
following sense: there is a sequence of train tracks θi minimally carrying the
component, such that the branches of θi are mapped to geodesic segments
in T with lengths going to zero. This is proved in Lemma 3.1.

Using this result, we construct τn and fn in Section 4. By a theorem of
Morgan and Shalen ([MoS1]), if (ρn) does not have a compact closure in
AH(M), a subsequence of (ρn) tends to a minimal small action of π1(M) on
an R-tree T . Let Lrec be the union of the recurrent leaves of the Hausdorff
limit L∞ of |λn| where the λn are measured laminations with (lρn(λn))
bounded. We construct a sequence of train tracks τn = τ1∪τ2n∪τ

3
n where τ1

carries realised components of Lrec, τ
2
n carries non-realised components of

Lrec and τ
3
n carries L∞−Lrec with small weight with respect to λi. We also

construct a sequence of ρn-equivariant maps f̂n from the universal cover τ̂n
of τn to H3 which map the branches of τ̂1 to long geodesic segments and the
branches of τ̂2n to comparatively short ones. This is proved in Lemma 4.1.

In Section 5 we show that there are long parts of fn(λn) which nearly
backtrack. We approximate λn by weighted simple closed curves cn. By
hypothesis, the geodesic representatives c∗n ⊂ Mn = H3/ρn(π1(M)) of cn
have bounded lengths (taking the weight also into account). On the other
hand, by construction, fn(cn) gets infinitely long with n. We construct an
annulus between fn(cn) and c

∗
n whose area is controlled. In this annulus, it

follows from the difference in length between fn(cn) and c∗n that, for large
enough n, the path fn(cn) has a number of long segments in which it comes
back nearly parallel to itself. This provides us with some long and thin strips
connecting two segments of fn(cn).

In Section 6, we explain how these strips give rise to discs or annuli whose
boundaries converge in the Hausdorff topology to a geodesic lamination
which does not intersect λ transversely.

In Section 7 we deduce Theorem 2 and 1 from the results in the preceding
sections.
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2. Preliminaries

2.1. Deformation space. LetG be a finitely generated torsion-free Kleinian
group, namely a (torsion-free and finitely generated) discrete subgroup of
Isom+(H3). The group G is convex cocompact if there is a compact subset
C ⊂ H3/G that contains all the closed geodesics. Denote by ΩG the domain

of discontinuity for the action of G on Ĉ. The group G is convex cocompact
if and only H3/G ⊔ ΩG/G is compact.

LetM be a compact orientable irreducible atoroidal manifold. LetAH(M)
denote the set of faithful discrete representations from π1(M) to PSL(2,C)
modulo conjugacy. We endow AH(M) with the topology induced from
the representation space. The subspace of AH(M) consisting of convex
cocompact representations is denoted by CC(M). This space CC(M) is
not empty if and only if ∂M contains no tori and it may contain several
connected components. The component consisting of representations ρ for
which there is a homeomorphism from Int(M) to H3/ρ(π1(M)) that induces
ρ is denoted by CC0(M). For such representations, the homeomorphism
Int(M) → H3/ρ(π1(M)) extends to a homeomorphismM → H3/ρ(π1(M))⊔
Ωρ/ρ(π1(M)). This produces a natural identification of Ωρ/ρ(π1(M)) with
∂M . Notice that the homeomorphism M → H3/ρ(π1(M)) ⊔ Ωρ/ρ(π1(M))
is well defined up to composition by an element of Mod0(M) (the set of
diffeomorphisms of M that are homotopic to the identity map).

For a Kleinian group G, if there is a quasi-conformal automorphism f
of S2

∞ such that fGf−1 is again a Kleinian group, then this group fGf−1

is said to be a quasi-conformal deformation of G. We denote by QH(G)
the space of quasi conformal deformations of G up to conjugacy. By the
theory of Ahlfors-Bers, there is a ramified covering map from T (ΩG/G) to
the space of quasi-conformal deformations of G modulo conjugacy.

Given a representation ρ0 ∈ CC0(M), we haveQH(ρ0(π1(M)) = CC0(M).
As we have seen, for any ρ ∈ CC0(M), there is a natural identification of
Ωρ/ρ(π1(M)) with ∂M . Thus the theory of Ahlfors-Bers provides us with a
covering map T (∂M) → CC0(M) which we call the Ahlfors-Bers map.

2.2. R-trees. An R-tree T is a geodesic metric space in which any two
points x, y can be joined by a unique simple arc. Let G be a group acting
by isometries on an R-tree T . The action is minimal if there is no proper
invariant subtree and small if the stabilizer of any non-degenerate arc is
virtually Abelian.

Morgan and Shalen [MoS1] made use of R-trees to compactify defor-
mation spaces. They used algebraic methods involving valuations, while
the same result has been obtained by Paulin [Pa] and Bestvina [Bes] us-
ing a more geometrical approach. In this paper we shall adopt the point
of view of Kapovich-Leeb [KaL] (see also [Ka, chapters 9 and 10]). Let
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(ρn ⊂ GF0(M,P )) be a sequence of representations such that no subse-
quence of (ρn) converges algebraically. Let Γ ⊂ π1(M) be a set of generators
and let x̃n ⊂ H3 be a point realising the minimum ǫ−1

n on H3 of the function
max{d(x̃, ρn(a)(x̃)), a ∈ Γ} (see for example [Pa, Lemma 6.5] for the exis-
tence of such a point). Since no subsequence of (ρn) converges algebraically,
(ǫ−1
n ) tends to ∞. Choose a non-principal ultra-filter ω and denote by ǫnH

3

the hyperbolic space H3 with the hyperbolic metric rescaled by ǫn. The
ultra-limit (Xω, x) = ω − lim(ǫnH

3, xn) of the sequence of rescaled spaces
is defined as follows. Let Πn(ǫnH

3) be the infinite product of the spaces
(ǫnH

3). We define a function dω on Πn(ǫnH
3) by setting

dω(y, z) = ω − lim dǫnH3(ỹn, z̃n)

for any two points y = (ỹn) and z = (z̃n) lying in Πn(ǫnH
3).

This function dω is a pseudo-distance in Πn(ǫnH
3) with values in [0,∞]

and we set (Xω, dω) = (Πn(ǫnH
3), dω)/ ∼ where we identify points with zero

dω-distance. Let x = (x̃n) denote the sequence of points x̃n defined above.
The metric space (Xω, x) is the set of points of (Xω) with a finite distance
from x. This metric space is an R-tree (cf. [KaL]). The action of ρn(π1(M))
on ǫnH

3 gives rise to an action of π1(M) on (Xω, x) by isometries. This
action is small (cf. [KaL]). Let T be the minimal invariant subtree of Xω

under this action. We say that (ρn) tends to the action of π1(M) on T with
respect to ω. For c ∈ π1(M) let us denote by δT (c) the minimal translation
distance of c on T . Then we have δT (c) = ω − lim ǫnlρn(c), where lρn(c)
is the length in H3/ρn(π1(M)) of the closed geodesic in the free homotopy
class of c.

2.3. Geodesic laminations. A geodesic lamination L on a complete hy-
perbolic surface S is a compact set which is a disjoint union of complete
embedded geodesics called leaves. It is known that this definition is inde-
pendent of a chosen hyperbolic metric on S. The details can be found in
[Ot3]. For a connected geodesic lamination L which is not a simple closed
curve we denote by S̄(L) the smallest subsurface of S with compact ge-
odesic boundary containing L. Inside S̄(L) there are finitely many closed
geodesics (including the components of ∂S̄(L)) disjoint from L. These closed
geodesics do not intersect each other (cf. [Le1] page 99) and we denote by
∂′S̄(L) ⊃ ∂S̄(L) their disjoint union. For example if a component of S̄(L)\L
is an annulus, its core curve is contained in ∂′S̄(L) but not in ∂S̄(L). Re-
moving a small open tubular neighbourhood of ∂′S̄(L) from S̄(L) we get a
compact surface S(L). We call S(L) the surface embraced by the geodesic
lamination L and ∂′S̄(L) the effective boundary of S(L). If L is a simple
closed curve, we define S(L) to be an annular neighbourhood of L and we
take ∂′S̄(L) = L. When L is not connected, S(L) is the disjoint union of
the surfaces embraced by the connected components of L.

We say that a geodesic measured lamination L crosses another geodesic
lamination L′ if at least one leaf of L intersects a leaf of L′ transversely.
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A measured geodesic lamination λ is a geodesic lamination |λ| together
with a transverse measure of full support. We denote by ML(S) the space
of measured geodesic laminations on S endowed with the weak-∗ topol-
ogy. To simplify the notations, we write ML(∂M) instead of ML(∂χ<0M)
for a compact 3-manifold M with boundary. The projective lamination
space PML(∂M) is defined to be (ML(∂M) − {0})/R∗

+ where 0 stands
for the measured lamination with empty support. It should be noted that
ML(∂M) contains measured laminations whose restriction to some com-
ponent of ∂M is empty. The Teichmüller space T (∂M) denotes similarly
T (∂χ<0M). The boundary of the Thurston compactification of T (∂M) is
equal to PML(∂M).

2.4. Some notations. When λ is a measured geodesic lamination, we de-
note by |λ| the support of λ. For an arc k whose intersections with |λ| are
transverse, we will denote by

∫
k
dλ the λ-measure of k.

Let (un) and (vn) be two sequences of non-negative real numbers. We say
that un is o(vn) if for any ǫ there is N(ǫ) such that for n ≥ N(ǫ), we have
un ≤ ǫvn. We also write un = o(vn).

We will say that un is O(vn) if there are K,N > 0 such that for n ≥ N ,
we have un ≤ Kvn.

We say that un is Θ(vn) if un is O(vn) and vn is O(un).

2.5. Train tracks and their realisations. A train track τ in a hyperbolic
surface S is a union of finitely many rectangles with a distinguished pair of
vertical opposite sides. These rectangles meet each other only along non-
degenerate segments contained in their vertical sides in such a way that every
point on a vertical side of a rectangle lies in at least one other rectangle.
The rectangles are called branches, and they are foliated by vertical segments
called ties. A connected component of the intersection of the branches is
called a switch. The branches are also foliated by horizontal segments, and
a smooth arc which is a union of horizontal segments is called a rail or a
train route. A geodesic lamination is carried by τ if it is isotopic to one
which lies in τ in such a way that the leaves are transverse to the ties (see
[Bo] or [Ot3] for more details about train tracks).

When τ is a train track and λ is a measured geodesic lamination whose
support is carried by τ , we say that λ is carried by τ . For a branch b of τ ,
we define the number λ(b) to be the λ-measure of a tie of b. This number
does not depend on the choice of a tie in b.

Consider an action of π1(S) on an R-tree T by isometries. A measured
lamination λ is said to be realised in T if there is a π1(S)-equivariant map
φ : H2→T such that the restriction of φ to any lift of a leaf of λ in H2 is
a complete geodesic in the tree, and identifying this geodesic with R gives
a weakly monotonous unbounded function on the leaf. A train track τ ∈ S
is said to be realised in T if there is an equivariant map φ : H2→T which
maps each lift of a branch of τ to a non-trivial geodesic segment on T in
such a way that each rail is mapped injectively, and that each tie collapses
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to a point. By [Ot3], λ is realised in T if and only if λ is carried by a train
track τ which is realised in T .

We say that a measured lamination λ is collapsed by φ : H2→T when there
is a train track τ carrying λ such that every component of τ̃ , the preimage
of τ in H2, is mapped to a point by φ. It is straightforward that there exists
an equivariant map collapsing λ if and only if the action of i∗(π1(S(λ)) on
T has a global fixed point.

For a measured lamination µ on a surface S, if it does not have atoms,
the semidistance on H2 induced by integrating the transverse measure µ̃
along paths is continuous with respect to the usual topology of H2. By
replacing closed leaves by annuli foliated by parallel closed curves, we obtain
a measured partial foliation Fµ. The quotient of H

2 under the semi-distance
induced by Fµ gives rise to a dual tree Tµ with the projection π : H2→Tµ.

A morphism φ : T →T ′ between R-trees is a map with the property that
every non-degenerate arc [p, q] ⊂ T contains a non-degenerate subarc [p, r] ⊂
[p, q] which is mapped isometrically onto φ[p, r] ⊂ T ′. A morphism from Tµ
to T is said to fold only at complementary regions if the only folding points
are projections of complementary regions of F̃µ, where p is a folding point
if [p, q], [p, q′] ⊂ Tµ, [p, q]∩ [p, q′] = {p} is mapped to the same segment in T .
The following theorems [MoO] will be useful to us later.

Theorem A [Morgan-Otal] Let (α1, · · · , αk) be a collection of simple closed
curves which define a pants decomposition of a surface S and let π1(S) act on
an R-tree T . Then there is a measured lamination µ on S and an equivariant
morphism

φ : Tµ → T

with δT (αi) = δTµ(αi) = i(µ, αi) for all i. Moreover φ folds only at comple-
mentary regions.

The above theorem is generalised by Skora [Sk].

Theorem B [Skora] Suppose the action of π1(S) on an R-tree T is minimal
and small such that the action of each element representing ∂S has a fixed
point in T . Then there is a unique measured lamination µ and an equivariant
isometry

φ : Tµ → T .

2.6. Compactification of M̃ . We denote by M̃ the universal covering of
M and by p : M̃ →M the covering projection. We compactify M̃ in the fol-
lowing way: endow M with a geometrically finite hyperbolic metric σ with
minimal parabolics which does not correspond to a Fuchsian representation,
and let us denote by N(σ)thick the complement in the convex core N(σ) of
ǫ-thin neighbourhood of the cusps of σ for some ǫ smaller than the Margulis
constant. Let us choose an isometry between the interior of M̃ and H3.
Now we can consider Ñ(σ)thick as a closed subset of H3. Since σ is geomet-
rically finite, there is a natural homeomorphism between M and N(σ)thick.

Therefore we can regard M̃ as a closed subset of H3. The compactification
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M̃ of M̃ is the closure of this closed subset in the usual compactification of
H3 by the unit ball. If we replace σ by another geometrically finite met-
ric σ′ with minimal parabolics, it follows from results of [Fl] that we get a
compactification which is homeomorphic to the one obtained with σ. There-
fore this definition is independent of the metric we chose. We call this the
Floyd-Gromov compactification of M̃ . To denote the ideal boundary in the
Floyd-Gromov compactification, we use the symbol ∂∞M̃ .

A meridian is a simple closed curve c ⊂ ∂M which bounds a disc in M
but not on ∂M . A compact surface Σ ⊂ ∂M is incompressible if it contains
no meridians. When we consider the closure of a lift of an incompressible

surface in M̃ , we have the following:

Lemma 2.1. Let Σ ⊂ ∂χ<0M be a compact connected incompressible surface
which does not contain any essential closed curve homotopic into ∂χ=0M .

Let Σ̂ be the universal covering of Σ, which is completed in the usual way to

a closed disc Σ̂. Then any lift of Σ to ∂M̃ is a disc whose closure in M̃ is

homeomorphic to Σ̂ in an equivariant way.

Proof. This lemma was proved in [Ot1]. See also Lemme 2.4 of [Le1]. �

Let Σ ⊂ ∂M be a compact (possibly disconnected) incompressible surface.
Johannson and Jaco-Shalen defined a characteristic submanifold W relative
to Σ (cf. [Jo] and [JaS]). We say that an I-bundle N ⊂ M is essential in
(M,Σ) if

(1) π1(N) injects to π1(M) by the homomorphism induced from the
inclusion,

(2) N ∩ ∂M ⊂ Σ is the associated ∂I-bundle, and
(3) N cannot be homotoped into Σ by a homotopy fixing N ∩ Σ.

Similarly a solid torus D2 × S1 is essential in (M,Σ) if it satisfies the first
and the third conditions above.

When we are considering an atoroidal manifold M whose boundary con-
tains no torus, a characteristic submanifold is a disjoint union of essential
(possibly twisted) I-bundles over compact incompressible surfaces and essen-
tial solid tori. A disjoint union W of essential (possibly twisted) I-bundles
and essential solid tori is said to be a characteristic submanifold if and only
if it has the following two properties:

• any essential (possibly twisted) I-bundle and any essential solid torus
in (M,Σ) can be homotoped in W ;

• no connected component of W can be homotoped into another con-
nected component of W .

By [Jo] and [JaS], ifW andW ′ are two characteristic submanifolds relative
to Σ, then there is a diffeomorphism ψ : M → M isotopic to the identity
relative to ∂M − Σ such that ψ(W ) =W ′ and that ψ(W ∩ Σ) =W ′ ∩ Σ.

Such a characteristic submanifold can be found by looking only at M̃−M̃ .



CONVERGENCE OF FREELY DECOMPOSABLE KLEINIAN GROUPS 11

Proposition 2.2 ([Le1], §2, paragraphs after Lemme 2.7). Let Σ and Σ′ ⊂
∂χ<0M be two compact, connected, incompressible surfaces which are dis-
joint or equal and do not contain any essential closed curve which can be
homotoped into ∂χ=0M . Let Σ̃ ⊂ ∂M̃ (resp. Σ̃′) be a connected component
of the preimage of Σ (resp. Σ′) and let Γ ⊂ ρ(π1(M)) (resp. Γ′) be the

stabiliser of Σ̃ (resp. Γ′).

Then Σ̃ ∩ Σ̃
′

is either empty or equal to the limit set of Γ ∩ Γ′.
In the latter case, if Γ∩ Γ′ is not cyclic, then it is the fundamental group

of a (possibly twisted) I-bundle which is a connected component of a charac-
teristic submanifold of (M,Σ∪Σ′). If Γ∩Γ′ is cyclic, then it is a finite index
subgroup of a solid torus which is a connected component of a characteristic
submanifold of (M,Σ ∪ Σ′).

See Appendix for a brief proof of Proposition 2.2.

2.7. Geodesic laminations on compressible surfaces. LetM be a com-
pact 3-manifold with boundary, and let c ⊂ ∂M be a simple closed curve.
A c-wave is a simple arc k, with k ∩ c = ∂k such that there is an arc κ in
c with the simple closed curve k ∪ κ bounding a compressing disc in M . In
some literature, a c-wave is allowed to intersect c in its interior. A simple
innermost argument shows that if there is a c-wave in this generalised sense,
there is one in our sense.

Let L be a geodesic lamination on ∂χ<0M , and let c ⊂ ∂M be a multi-
curve. In the following, we always assume that simple closed curves or multi-
curves are geodesics for a fixed reference hyperbolic metric, hence there are
no inessential intersections between them or with geodesic laminations. We
say that L is in tight position with respect to c if L contains no c-waves and
if every leaf of L intersects c transversely.

Following [Ot1, Theorem 1.6], we use cut-and-paste operations to con-
struct a meridian m such that a given geodesic lamination contains no m-
waves.

Claim 2.3. Let F ⊂ ∂M be a compressible compact surface, and let β ⊂ F
be a measured geodesic lamination. Then either β intersects transversely a
meridian m and contains no m-waves, or there is a sequence of meridians
(mi ⊂ F ) converging in the Hausdorff topology to a geodesic lamination
which does not cross β.

Proof. If β intersects no meridians transversely, then, since F is compress-
ible, there is a meridian m ∈ F such that i(β,m) = 0. Setting mi = m for
every i, we get the conclusion.

Now we assume that β intersects a meridian m transversely. If β contains
an m-wave k, let us “cut m along k” to get a new meridian m1 : let κ be the
closure of a connected component of m−∂k such that

∫
κ
dβ ≤ 1

2 i(β,m), and
m1 the simple closed geodesic in the free homotopy class of k ∪ κ. We have
i(β,m1) ≤

1
2 i(β,m) and m1 is a meridian. If β contains no m1-waves, we are

done. If β contains an m1-wave k1, then we cut m1 along k1 as above to get
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a new meridian m2 with i(m2, β) ≤
1
4 i(m,β). Repeating this operation, we

get either a meridian m′ such that β contains no m′-waves or a sequence of
meridians (mi) such that i(mi, β) −→ 0. In the latter case, we can extract
a subsequence such that mi converges in the Hausdorff topology to some
geodesic lamination H. Since i(mi, β) −→ 0, we see that H does not cross
β. �

Much of the rest of this section parallels the argument in [Le1], and we
refer the readers there for more details.

We shall now introduce homoclinic leaves. They have already proved to be
a useful tool in the study of laminations on the compressible boundary of a
hyperbolic 3-manifold (see for example [Ot1], [KlS] and [Le1]). They are also
related to Culler-Morgan-Shalen compactification of Character Varieties of
freely decomposable Kleinian groups (see [KlS] and [Le1]). They shall play
an important role in different places in this paper.

Let l be a simple geodesic on ∂χ<0M . Such a simple geodesic l is said

to be homoclinic if a lift l̃ of l to the universal cover M̃ of M contains two
sequences of point (x̃n) and (ỹn) such that the distance between x̃n and ỹn
in M̃ is uniformly bounded whereas their distance measured on l̃ tends to
∞. By Lemma 2.1, an incompressible surface cannot contain a homoclinic
geodesic.

Homoclinic leaves appear naturally in Hausdorff limits of sequences of
meridians. This is illustrated in the following criterion of Casson whose
proof can be found in [Ot1] and [Le1, Theorem B.1].

Lemma 2.4. Let (mn ⊂ ∂M) be a sequence of meridians which converges
to a geodesic lamination H in the Hausdorff topology. Then H contains a
homoclinic leaf.

A simple half-geodesic is an embedded half-line in ∂M whose image is
locally geodesic for some hyperbolic metric on ∂χ<0M . Let l̃+ ⊂ ∂M̃ be a

half-geodesic and let
¯̃
l+ be its closure in the Floyd-Gromov compactification

of M̃ . We say that l̃+ has a well-defined endpoint if
¯̃
l+ − l̃+ contains one

point. We say that a geodesic l̃ ⊂ ∂M̃ has two well-defined endpoints if
l̃ contains two disjoint half geodesics each having a well-defined endpoint.
Notice that we allow the two endpoints to be the same.

As in the introduction, we say that a measured geodesic lamination λ ∈
ML(∂M) is doubly incompressible if and only if there exists η > 0 such that
i(λ, ∂E) > η for every essential annulus, Möbius band or disc E in M .

We denote by D(M) ⊂ ML(∂M) the set of doubly incompressible mea-
sured geodesic laminations and by PD(M) its projection in the space PML(∂M)
of projective measured laminations.

Some properties of this set D(M) are discussed in [Le2]. One can deduce
the following from [Le1].
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Lemma 2.5. Let λ ∈ D(M) be a measured geodesic lamination and l+, l− ⊂
∂M two simple half-geodesics which do not intersect |λ| transversely. Then

any lift of l+ (resp. l−) to M̃ has a well-defined endpoint in ∂∞M̃ .
Furthermore, if a lift of l+ has the same endpoint as a lift of l−, then they

are asymptotic on ∂M̃ .

Proof. The relation between doubly incompressible laminations and bending
laminations is explained in [Le2, Lemma 3.5]. Knowing this relation, the
proof of Lemma 2.5 can be deduced from [Le1] as follows.

The first property, namely that any lift of l+ (resp. l−) to M̃ has a well-

defined endpoint in ∂∞M̃ , can be deduced from the proofs of [Le1, Lemme
3.1] and [Le1, Lemme 3.3].

The proof of the second property, namely that if a lift of l+ has the same
endpoint as a lift of l− then they are asymptotic on ∂M̃ , can be found in
Lemme C5 and more specifically in the paragraph after [Le1, Affirmation
C3]. �

From [Le2], we also get the following:

Lemma 2.6. Let λ ∈ D(M) be a measured geodesic lamination and h a
homoclinic simple geodesic. Then the support |λ| of λ crosses h.

Proof. When M is not a genus-2 handlebody, this is [Le2, Lemma 3.6]. The
case when M is a genus-2 handlebody is discussed in [Le2] in the remark
following [Le2, Lemma 3.6]. �

By the same argument as the proof of Claim 2.3, we get the following.

Lemma 2.7. Let λ be a measured geodesic lamination in D(M), and let
S ⊂ ∂M be a compressible surface. Then there is a meridian m in S such
that S contains no m-waves disjoint from |λ|.

Proof. Take any meridian m in S. If there is an m-wave in S which is
disjoint from |λ|, then by the same argument as the proof of Claim 2.3, we
get a sequence of meridians (mi) on S with i(mi, λ) −→ 0. This contradicts
the assumption that λ is doubly incompressible. �

3. Realisations of doubly incompressible laminations

Let π1(M) y T be a small minimal action of π1(M) on an R-tree for a
compact irreducible atoroidal 3-manifold M . Let S be a connected compo-
nent of ∂χ<0M . Using the map i∗ : π1(S) → π1(M) induced by the inclusion,
we get an action of π1(S) on T . Therefore, if λ ∈ ML(S) is a measured
geodesic lamination, it makes sense to ask whether or not it is realised in T .
In this section, we shall discuss this question for the connected components
of a measured lamination lying in D(M).

If a lamination is collapsed to a point by an equivariant map to a tree,
then it is not realisable. Although the converse is not true, one may expect
that non-realisability of a minimal component implies that the component
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is carried by a train track of bounded complexity whose edges are mapped
to arbitrarily short arcs in the R-tree. In the following lemma, we shall show
that this expectation is fulfilled for a doubly incompressible lamination. The
proof will occupy the rest of the section.

Lemma 3.1. Let π1(M) y T be a small minimal action of π1(M) on an
R-tree. Let λ ∈ D(M) be a measured geodesic lamination, and α a minimal
sublamination of λ. Then one of the following holds:

• the measured lamination α is realised in T ;
• there is a sequence of train tracks θi each of which minimally carries
α and has the following properties:

– θi has only one switch κi and κi ⊃ κi+1 for every i.
– There are a sequence ηi −→ 0, and a sequence of π1(S)-equivariant

maps φi : H
2 → T such that φi maps every branch of the preim-

age of θi to a geodesic segment (which may be a point) with
length smaller than ηi.

– φi(κi) = x does not depend on i.

Furthermore there is at least one component of λ which is realised in T .

Note that, since θi has only one switch, the number of its branches is
uniformly bounded.

Proof. When α is collapsed in T , it is easy to see that we are in the second
situation. The difficult case here is when α is neither collapsed nor realised
in T .

When α is a simple closed curve, either α is collapsed (when δT (α) = 0)
or α is realised (when δT (α) > 0).

From now on, we assume that α is not a simple closed curve. As we will
see later, the proof is easier when ∂M is incompressible. Bearing that in
mind, we first get rid of the meridians that are disjoint from S(λ). We cutM
along a maximal family of compressing discs disjoint from S(α). We denote
by N the connected component of the resulting manifold that contains α on
its boundary. By construction, the surface ∂N − S(α) is incompressible in
N .

Using the homomorphism i∗ : π1(N) → π1(M) induced by the inclusion,
we view π1(N) as a subgroup of π1(M). Thus we get a small action of π1(N)
on T . Let TN be the minimal subtree of T that is invariant under the action
of π1(N) regarded as a subgroup of π1(M).

We denote by F the component of ∂N that contains α. Since λ lies in
D(M), no component of ∂S(α) bounds a disc in M . It follows that the
measured lamination α can be regarded as an element of ML(F ). Using
the map i∗ : F → N induced by the inclusion, we get an action of π1(F ) on
TN (which is not small when ∂N is compressible). Let TF be the minimal
subtree of TN that is invariant under the action of π1(F ). If TF is trivial,
then α is collapsed. From now on we assume that TF is not trivial.
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As is often the case for 3-manifolds, the case when ∂N is incompress-
ible is easier and will give us important insights for the general case. Since
we are only interested in α, we just need to assume that F is incompressible.

First case : F is incompressible in N .
In this case, the action of π1(F ) on TF is small. By Theorem B (Skora’s

Theorem), there are a measured geodesic lamination β on F and an isomor-
phism φ : Tβ → TF from the dual tree Tβ of β to TF . If β crosses α, then α
is realised in T (cf. [Ot3, Theorem 3.1.4]). If β and α are disjoint, then α
is collapsed in T .

It remains to deal with the case when α is a connected component of β.
Let (ηi) be a sequence of positive numbers converging to 0. Let κi ⊂ F
be a sequence of segments intersecting α and β such that κi+1 ⊂ κi and∫
κi
dβ ≤ 1

2ηi. Let θi be a train track minimally carrying α and having only

one switch, which is κi (refer to [BoO, § 3.2] for the construction of such a
train track). Let p′ be a point of

⋂
i κi, and p̂

′ ∈ H2 a lift of p′. This point
p̂′ corresponds to a point of Tβ which we shall also denote by p̂′. Let p ∈ T
be the image of p̂′ under φ. Let κ̂i ⊂ H2 be the lift of κi that contains p̂′,
and θ̂i the lift of θi that contains κ̂i. Define φi on κ̂i by φi(κ̂i) = p. Extend

φi to an equivariant map from the union of the switches of θ̂i to T . If b̂ is
a branch of θ̂i, we define φi(b̂) to be the segment of T which connects the

images of the vertical sides of b̂. Finally, extend φi to a π1(S)-equivariant
map φi : H

2 → T .
We have thus constructed θi and φi, and we need to check that they have

the expected properties. Let b̂ be a branch of θ̂i. Translating it by an element
of π1(S), we can assume that κ̂i contains a vertical side of b̂. Since θi has
only one switch, there is some g ∈ π1(S) such that g(κ̂i) contains the other

vertical side of b̂. Let k̂1 be an arc joining κ̂i to g(κ̂i) whose projection k1
on S lies in b− |β|. Then we have

∫
k1
dβ = 0. Let k̂2 ⊂ κ̂i be an arc joining

p̂′ to k̂1 and let k̂3 ⊂ g(κ̂i) be an arc joining g(p̂′) to k̂1. The β-measures of
k2 and k3 are less than

∫
κi
dβ ≤ 1

2ηi. Therefore we have
∫
k1∪k2∪k3

dβ ≤ ηi.

This implies that the distance between p̂′ and g(p̂′) in Tβ is less than ηi. It

follows then from the construction of φi that the length of φi(b̂) is less than
ηi.

Thus we conclude that when F is incompressible, one of the conclusions
of Lemma 3.1 holds.

Second case : F is compressible.
The difference from the previous case is that the action of π1(F ) on TF is

not small anymore, and hence we cannot use Theorem B directly. We shall
show that if α is neither collapsed nor realised, the following conditions hold:
S(α) is incompressible and each component d of ∂S(α) fixes a point in T
(meaning that each element in the conjugacy class in π1(N) associated to
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d has a fixed point). These conditions allow us to use Theorem B on S(α)
and to construct θi as in the first case.

First we shall use Theorem A to associate a lamination to the action of
π1(F ) on T .

Let (ln) be a sequence of simple closed curves in S(α) converging to the
support of α in the Hausdorff topology. By Theorem A (Morgan-Otal’s
Theorem), there exist, for any n, a measured lamination βn ∈ ML(S(α))
and a morphism Φn : Tβn→TN , where Tβn is the R-tree dual to βn, such that
δTβn (ln) = δTN (ln). The difference from the case when F is incompressible
is that Φn may not be an isomorphism and that βn depends on ln. Let B be
the Hausdorff limit of |βn| after passing to a converging subsequence. If α
is disjoint from B, then α is collapsed in TN . If α intersects B transversely,
then α is realised in T as was shown in [KlS, Lemma 11]. Hence we only
need to deal with the case when |α| is contained in B.

As will be explained below, it follows from results of [KlS], that B can be
extended with a homoclinic leaf h. Combining this with the assumption that
α is a sublamination of a doubly incompressible lamination we shall prove
that S(α) is incompressible. Then we will use h to construct an essential I-
bundleW ⊂ N whose boundary contains S(α). UsingW in the construction
of βn will give us enough control on βn to guarantee that i(βn, ∂S(α)) = 0.
This will imply that each component of ∂S(α) fixes a point in T

Claim 3.2. There is a geodesic lamination H ⊃ B that contains a homo-
clinic leaf h.

Proof. By Claim 2.3, either βn is in tight position with respect to some
meridian in F or there is a homoclinic geodesic hn ⊂ F which does not cross
βn. By the proof of [KlS, Proposition 2], if βn intersects a meridian m and
contains no m-waves, then |βn| can be extended to a geodesic lamination
with a homoclinic leaf hn. Furthermore by the proof of [KlS, Proposition
1], there is a Hausdorff limit of meridians that does not cross βn. (See
Appendix, Proposition 8.2 and Lemma 8.3.) Thus we have found in every
case a sequence of meridians in F converging in the Hausdorff topology to a
geodesic lamination H which does not have a transverse intersection with B.
By Casson’s criterion (Lemma 2.4), the lamination H contains a homoclinic
leaf h. �

From now on we assume that |α| is a sublamination of B, since we have
seen earlier that in the other cases, the conclusion is straightforward. Since
α is a sublamination of a doubly incompressible lamination, h can not be
a leaf of α (Lemma 2.6). As we saw in Lemma 2.1, an incompressible
surface cannot contain a homoclinic geodesic. By construction F − S(α)
is incompressible, hence the geodesic h does not lie in F − S(α). Since α
is arational in S(α), this implies that there is a half-leaf h+ of h which is
asymptotic to a half-leaf of α on ∂N . Up to cutting h+, we may assume
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that h+ ⊂ S(α). Let h− be another half-leaf of h which is disjoint from h+
and from ∂S(α). From the assumption that λ is doubly incompressible, we
shall deduce that h− is disjoint from S(α).

Claim 3.3. If |α| ⊂ B, then h− ⊂ F − S(α).

Proof. Seeking a contradiction, we assume that h− ⊂ S(α). We shall show
that F − S(α) is compressible, which is impossible by construction.

We fix some geometrically finite hyperbolic metric on N and consider the
Floyd-Gromov compactification of Ñ . Let h̃ be a lift of h to Ñ . Since h is
homoclinic, the two endpoints of h̃ in ∂∞Ñ coincide. Let h̃± be the lift of
h± that lies in h̃.

Since α is a sublamination of λ which is doubly incompressible, then by
Lemma 2.5, h̃+ and h̃− are asymptotic on F̃ . Take a short geodesic arc k̃
connecting h̃− and h̃+ which does not lie on h̃ so that they form a triangle
on ∂Ñ with one vertex at infinity in ∂∞Ñ . Then any lift of a half-leaf of
α entering this triangle must have the same endpoint in ∂∞Ñ as the lifts
of h̃−, h̃+ since h does not intersect α transversely. Therefore such half-leaf
of α is trapped between h̃− and h̃+. It follows that we can push k̃ towards
the end of h̃± without changing the intersection number with α̃, where α̃ is
the preimage of α. Thus we obtain a sequence of geodesic arcs (k̃i), whose
lengths tend to zero and whose α-measure is

∫
k̃i
dα̃ =

∫
k̃
dα̃. We project it

to ∂N and pass to a subsequence so that (ki) converges to a point in the
Hausdorff topology. Since the transverse measure of α is non-atomic, the
only way this can happen is that

∫
k̃
dα̃ = 0, i.e., α̃ lies outside the triangle

and k is disjoint from α.
Let k̃′ be the segment on h̃ between the two endpoints of k̃ lying on h̃.

Then k̃ is homotopic to k̃′ in Ñ since Ñ is simply connected. Let k, k′ be the
projections of k̃, k̃′ to ∂N , and m be the closed geodesic homotopic to k∪k′.
We see that k is homotopic to k′ in N but not on ∂N since both of them
are geodesic arcs. Therefore, m bounds a (possibly singular) disc in N , and
it is disjoint from α since both h and k are disjoint from α. This contradicts
the fact that F − S(α) is incompressible by the Loop Theorem. �

It is quite easy to deduce from this Claim that S(α) is incompressible.

Claim 3.4. If |α| ⊂ B, then S(α) is incompressible.

Proof. Let us assume the contrary. By Lemma 2.7, there is a meridian
m ⊂ S(α) such that S(α) contains nom-waves disjoint from α. In particular

h+ is in tight position with respect to m. Let (m̃n) ⊂ Ñ , n ∈ N, be the

family of lifts of m which intersect h̃+. Since h+ is in tight position with
respect to m, each m̃n intersects h̃+ once, the curves m̃n are nested and
converge to the endpoint of h̃+ ([Le1, Claim 3.4]). Since h̃+ and h̃− have

the same endpoint, h̃− intersects m̃n for n large enough. In particular h−
intersects m ⊂ S(α), contradicting Claim 3.3. �
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We denote by A the minimal lamination contained in the closure of h−.
By Claim 3.3, S(A) is disjoint from S(α). Since F −S(α) is incompressible,
so is S(A). We shall use Proposition 2.2, to construct an essential I-bundle
whose boundary contains S(A) and S(α).

Claim 3.5. If |α| ⊂ B, then there is an essential I-bundle W ⊂ N whose
associated ∂I-bundle is S(α)∪S(A). Moreover, W is homeomorphic to T×I
with T homeomorphic to S(α)

Proof. Let S̃(α), S̃(A) be lifts of S(α), S(A) containing h̃+, h̃− respectively.

Since S(α) and S(A) are incompressible, by Lemma 2.1, the closures S̃(α), S̃(A)

of S̃(α), S̃(A) in Ñ are discs.

Since h̃+ and h̃− have the same endpoint in ∂∞Ñ , the two discs S̃(α)

and S̃(A) intersect in ∂∞Ñ . By Proposition 2.2, there is an essential I-
bundle W embedded in (N,S(α) ∪ S(A)), and h+ and h− are contained in
W ∩ (S(α)∪S(A)) (after cutting off arcs of finite lengths from h+ and h−).
Since α and A lie in the closures of h+ and h− respectively, the corresponding
∂I-bundle contains S(α) ∪ S(A). Hence W ∩ ∂N = S(α) ∪ S(A). This can
happen only when W is homeomorphic to T × I with T homeomorphic to
S(α). �

Since |α| lies in the closure of h+ and A lies in the closure of h−, for

any leaf ã of the preimage of α in S̃(α), there is a leaf ã′ of the preimage
of A with the same endpoints. It follows that we can isotope the bundle
structure so that the projections of A and the support of α along the fibres
of W coincide.

Now we can prove that each component of ∂S(α) has a fixed point in TN .

Claim 3.6. If |α| ⊂ B, then δTN (∂S(α)) = 0.

Proof. We choose a simple closed curve c ⊂ S(A) which is not homotopic
to a component of ∂S(A). In the construction of βn, we add the conditions
that δTβn (c) = δTN (c) and that δTβn (d) = δTN (d) for any component d of
∂(T × {0} ∪ T × {1}). Notice that this has no effect on the proof of Claim
3.2 and all that follows (in particular Claim 3.5).

If βn does not intersect ∂S(A) for some n, then δTβn (∂S(A)) = 0 =
δTN (∂S(A)). By Claim 3.5, δTN (∂S(α)) = δTN (∂S(A)) = 0, and we are
done.

Otherwise, B intersects S(A). Since h does not cross B and is asymptotic
to A, this implies that A lies in B. In particular, any leaf of B intersecting
∂S(A) contains a half-leaf asymptotic to A. Such a half-leaf intersects the
simple closed curve c ⊂ S(A) infinitely many times. This implies that
i(βn, ∂S(A)) is o(i(βn, c)). On the other hand, by construction, we have
i(βn, c) = δT (c) for any n. Thus we get i(βn, ∂S(A)) −→ 0. However, by
assumption, i(βn, ∂S(A)) = δTN (∂S(A)) does not depend on n. Thus we
have δTN (∂S(A)) = 0 = δTN (∂S(α)). �
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It follows that the conjugacy class in π1(F ) represented by each compo-
nent of ∂S(α) has a fixed point in TN . This enables us to use Theorem B on
the minimal subtree of TN which is invariant under the action of π1(S(α)).
Then we can use the same arguments as in the First case to construct the
train tracks θi and maps φi and show that the second alternative in the
statement of Lemma 3.1 holds.

Thus we have proved the first part of Lemma 3.1. It only remains to
show that at least one component of λ is realised in T . This was already
proved in [Le2, Proposition 6.1]. Let us briefly review the proof. Let (Ln)
be a sequence of multi-curves converging to λ in the Hausdorff topology.
As we have already seen, by Theorem A there exist a measured geodesic
lamination βn ∈ ML(∂M) and a morphism φn : Tβn → T from the dual
tree of βn to T such that for any simple closed curve ln which lies in Ln,
either δT (ln) > 0 and the restriction of φn to the axis of ln is an isometry
or δT (ln) = 0 and i(ln, βn) = 0. Extract a subsequence such that (βn)
converges in the Hausdorff topology to a geodesic lamination B. As we have
seen above, any connected component of λ that intersects B transversely is
realised in T .

If S(B) is compressible, then, by the proof of [KlS, Proposition 2], S(B)
contains a homoclinic geodesic h which does not cross B. Such a homoclinic
leaf crosses λ by Lemma 2.6. Thus, if S(B) is compressible, λ crosses B.

If S(B) is incompressible, then we can apply Skora’s Theorem B to each
component of S(B). It follows that βn does not depend on n for suffi-
ciently large n. Denote by β this constant geodesic measured lamination
βn. We deduce then from [MoS2] that β is an annular lamination (see [BoO,
Démonstration du Lemme 14]). Thus we see that λ crosses the support B
of β in this case as well. �

4. Mapping the train tracks to ǫnH
3

In this section, we shall begin the proof of Theorem 2. Here, we consider
a situation more general than the setting in Theorem 2 as we shall explain
below. We consider a sequence of measured laminations (λn) on S converg-
ing to λ. We also assume that |λn| converges to a geodesic lamination L∞ in
the Hausdorff topology and that each minimal sublamination of L∞ satisfies
the conclusion of Lemma 3.1. Let Lrec be the union of the recurrent leaves
of L∞.

We shall use the train tracks obtained in lemma 3.1 to construct a se-
quence of train tracks τn carrying λ and L∞ which are decomposed into
three parts. The first part τ1 is independent of n and carries the realised
part of Lrec. The second part τ2n carries the non-realised part of Lrec. The
third part τ3n, which is τn− (τ1∪τ2n) and not a train track, carries the rest of
L∞, and has weights with smaller order. Let us denote by τ̂n the preimage
of τn under the covering projection from the universal cover of ∂M to ∂M .
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In the process of constructing τn, we shall also build ρn-equivariant maps
f̃n from τ̂n to H3 which map the branches of τ̂1n to long segments and the
branches of τ̂2n to much shorter ones. These properties make it possible to
estimate the lengths of measured laminations carried by these train tracks.

Recall that when τ̂ ⊂ S̃ is the preimage of a train track τ on a component
S of ∂M , we say that a map ĥ : τ̂→H3 is ρn-equivariant if and only if for
every g ∈ π1(S) and x ∈ τ̂ , we have ĥ(gx) = ρn(i∗(g))ĥ(x), where i denotes
the inclusion from S to M .

We shall work in the following setting: (ρn) is a sequence of geometrically
finite representations uniformisingM . There is an ultrafilter ω and ǫn −→ 0
such that the action of ρn on ǫnH

3 tends to a small minimal action of π1(M)
on an R-tree T with respect to ω. We have a sequence (λn) of measured
geodesic laminations converging to a measured lamination λ. Furthermore
|λn| converges in the Hausdorff topology to a geodesic lamination L∞ and
each minimal sublamination of L∞ satisfies the conclusion of Lemma 3.1.

We call these assumptions the light assumptions. We use the assumption
that each minimal sublamination of L∞ satisfies the conclusion of Lemma
3.1 rather than the one that λ is doubly incompressible because it will not
contradict the assumption that lρn(λ

∗
n) is bounded which we shall add in the

next section. This way the statements of lemmas and claims in Sections 5
and 6 is non-empty, i.e. not based on contradictory hypothesis. To illustrate
this statement, let us construct an example with these light assumptions
which has bounded lρn(λ

∗
n).

Suppose that M is a handlebody which we regard as an I-bundle T × I
over a compact surface with boundary T . We pick a convex cocompact
representation ρ uniformising M , a meridian m, and two pseudo-Anosov
diffeomorphisms ϕ, ψ : T → T . We extend ϕ and ψ to fibred diffeomor-
phisms ϕM , ψM : M → M . We set ρn = ψnM∗ ◦ ρ. This sequence tends to
the action of π1(M) ≈ π1(T ) on the R-tree dual to the stable lamination
of ψ. We set mn = ϕnM (m), pick a simple closed curve c ⊂ ∂M which is
not entirely contained in T ×{0} nor in T ×{1}, and consider the sequence
λn = Dpn

mn ◦ ψnM (c) where Dmn : ∂M → ∂M is the right Dehn twist along
mn. If pn is large enough, compared to n, the Hausdorff limit L∞ of λn
contains two minimal sublaminations both of which are projected along the
fibres to the stable lamination of ϕ. Each of such sublaminations satisfies
the conclusion of Lemma 3.1 (it is easy to extend each of them to a doubly
incompressible lamination abandoning the other). On the other hand λn is
homotopic to ψnM (c), hence lρn(λ

∗
n) = lρ(c

∗) is bounded.

We detail the properties of τn and f̃n in the following lemma. We shall
work under the light assumptions which were introduced earlier. The rest
of the section is devoted to the proof of Lemma 4.1, which consists in con-
structing τn and f̃n.
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Lemma 4.1. Under the light assumptions, after taking a subsequence of
(ρn), there are train tracks τn carrying both L∞ and λn with decomposition
τn = τ1 ∪ τ2n ∪ τ3n such that

• each minimal sublamination of L∞ is carried by τ1 or τ2n;
• λn is minimally carried by τn;
• τ1 and τ2n are disjoint subtracks of τn (we do not require τ3n to be a
subtrack);

• τ3n is the union of all branches of τn that are not contained in τ1∪τ2n;
• the switches of τn lie in τ1 ∪ τ2n;
• the sum of the weights with which τn carries λn is bounded indepen-
dently of n;

and there is a ρn-equivariant map f̃n : τ̂n → H3 from the preimage of τn in
the universal cover of ∂M to H3, which has decomposition τ̂n = τ̂1 ∪ τ̂2n ∪ τ̂

3
n

corresponding to the decomposition τn = τ1 ∪ τ2n ∪ τ3n, such that:

a) for any branch b̂ of τ̂n, its image f̃n(b̂) is either a geodesic segment
or a point;

b) there are R > 0 and n(R) ∈ N such that, for n ≥ n(R), if b̂ is a

branch of τ̂1, then l(f̃n(b̂)) ≥ Rǫ−1
n , where ǫn is the rescaling factor

that appeared in the light assumptions;
c) there is a sequence of positive numbers δn −→ 0 such that, for any

n ∈ N, if b̂1, b̂2 are two adjacent branches of τ̂1 which are separated
by a switch, then the exterior angle between f̃n(b̂1) and f̃n(b̂2) is less
than δn;

d) there is a sequence of positive numbers ηn −→ 0 such that, for any

n ∈ N, if b̂ is a branch of τ̂2n, then we have ǫnl(f̃n(b)) ≤ ηn;

e) for any n ∈ N, if b̂ is a branch of τ̂3n, then λn(b)(ǫnl(f̃n(b̂))) is less
than ηn for (ηn) given in (d).

Proof. It was proved by Thurston that the set of weighted simple closed
curve is dense in ML(S) (cf. [FLP] and [Pe]), for every component S of ∂M .
By approximating each (λn) by a sequence of such unions of weighted simple
closed curves, and by a diagonal extraction, we get a sequence of unions of
weighted simple closed curves satisfying the light assumption. Therefore we
can assume that for each component S of ∂M , the intersection λn ∩ S is
either empty or a weighted simple closed curve.

Since we have only to construct train tracks on each component of ∂M
with non-empty intersection with L∞, we can assume that L∞ is contained
in a component S of ∂M . Let L be a minimal sublamination of Lrec.

Let us first consider the case when there is a train track θ minimally
carrying L which is realised in TS (recall that TS is the minimal subtree of

T invariant under i∗π1(S)). Let θ̂ be a lift of θ to the universal cover H2

of S. There is a continuous π1(S)-equivariant map φn : H2 → TS under

ρn such that φn is constant on every tie of θ̂ and the restriction of φn to
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any rail is injective. Following [Ot2], we shall construct a ρn-equivariant

map f̃n : θ̂ → H3. Let κ1, ..., κp be the switches of θ and κ̂1, ..., κ̂p ⊂ H2

lifts of κ1, ..., κp. Denote by x̃i,n ∈ TS ⊂ (Xω, x) the point φn(κ̂i). We first

define f̃n on {κ̂1, ..., κ̂p} by setting f̃n(κ̂i) = x̃i,n. We extend this map to

π1(S)({κ̂1, ..., κ̂p}) by f̃n(g(κi)) = ρn(g) ◦ f̃n(κ̂i) for any g ∈ π1(S) and any

1 ≤ i ≤ p. Let b̂ be a branch of θ̂. The vertical sides of b̂ lie in two switches κ̂
and κ̂′ whose images by f̃n have already been defined. On b̂, we let f̃n be the
map which is constant on each tie of b̂, and which induces a parametrisation
of the geodesic segment joining f̃n(κ̂) to f̃n(κ̂

′) with constant speed on a

horizontal side of b̂. Then for any branch b̂ of θ̂, we have

ǫnl(f̃n(b̂)) −→ lTS (φn(b̂)) > 0.

Let θ′ be the first subdivision of θ as defined in [Ot3, Chapitre 4, §4.1]:
that is, for each branch bj of θ, starting from every endpoint of bj ∩ bk lying
on the vertical side of bj , we cut bj along a horizontal arc up to its midpoint
and reorganise the decomposition into branches keeping the condition that
it carries λn. We let θ̂′ ⊂ θ̂ a lift of θ′. We shall deform the map f̃n to one
which is adapted to θ̂′. For a branch b̂ of θ̂′, its image by f̃n is a broken
geodesic segment which is the union of two geodesic segments. We deform
f̃n by a homotopy which is constant on the vertical sides of b̂ to a map which
is constant on each tie of b̂ and takes b̂ to the geodesic segment joining the
images under f̃n of the vertical sides of b̂. By slightly abusing notation, we
shall denote the deformed map by the same symbol f̃n.

Since θ is realised in TS , it follows from the argument of [Ot3, Chapitre

4] that f̃n has the following properties:

b) there are R > 0 and n(R) such that, for n ≥ n(R), if b̂ is a branch

of θ̂′, we have l(f̃n(b̂)) ≥ Rǫ−1
n ;

c) there is a sequence of positive numbers δn −→ 0 such that if b̂1, b̂2
are two adjacent branches of θ̂ which are separated by a switch, then
the external angle between f̃n(b̂1) and f̃n(b̂2) is smaller than δn.

We repeat the same construction for all the components of Lrec that are
realised in TS . Denote by τ1 the union of the train tracks θ′ thus obtained,
by τ̂1 its preimage in H2, and by f̃n : τ̂1 → H3 the map which agrees with
the map defined above on each connected component of τ̂1. By Lemma 3.1,
τ1 is not empty. We also see that λn passes through every branch of τ1 for
every n after taking a subsequence.

When a component L of Lrec is not realised in T , Lemma 3.1 gives rise
to a sequence of train tracks θi each carrying L minimally. We can assume
that λi passes through every branch of θi. Let us denote by τ2i the union of
the train tracks thus obtained from the components of Lrec which are not
realised in T . Finally we add branches to τ1 ∪ τ2i to get a train track τi
which minimally carries L∞ and λi.
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We shall now extend the map f̃n to the preimage τ̂2i of τ2i . Consider
a connected component L of Lrec which is not realised in T . Consider
the subtrack θi of τ

2
i which minimally carries L. We get from Lemma 3.1

that there are a point x ∈ T , a sequence ηi −→ 0, and a sequence of
π1(S)-equivariant maps φi : H

2 → T such that φi maps each branch of the
preimage of θi to a geodesic segment (which may be a point) with length
smaller than ηi and a lift of κi (the switch of θi) is mapped to x under φi. Set
x = (x̃n) ∈ Πn(ǫnH

3) (we pick an element in the equivalence class defined

by x) and fix some i ∈ N. Let θ̂i ⊂ H2 be a lift of θi, and κ̂i ⊂ θ̂i the lift of
κi which is mapped to x by φi.

Let Gi ⊂ π1(∂M) be a finite set consisting of all g ∈ π1(∂M) such that if

b̂ is a branch of θ̂i and κ̂i contains a vertical side of b̂, then the other vertical
side of b̂ lies in g(κ̂i). Recall that for each branch b̂, the length of φi(b̂) is
less than ηi. Therefore, we have d(x, gx) ≤ ηi for any g ∈ Gi. Since T is the
ω-limit of ǫnH

3, we have ǫnd(x̃n, ρn(g)(x̃n)) ≤ 2ηi for any g ∈ Gi for n large

enough. For any g ∈ Gi∪{id}, we define f̃n(g(κ̂i)) by f̃n(g(κ̂i)) = ρn(g)(x̃n).

Let b̂ be a branch of θ̂i with vertical sides lying in two switches κ̂i and g(κ̂i)

for some g ∈ Gi. If f̃n(κ̂i) = f̃n(ρn(g)(κ̂i)), then we set f̃n(b̂) = f̃n(κ̂i).

Otherwise, we set f̃n to be the map which is constant on each tie of b̂ and
takes b̂ to the geodesic segment joining f̃n(κ̂i) to f̃n(ρn(g)(κ̂i)). Extend f̃n to

an equivariant map from θ̂i to H3. For sufficiently large n and any branch b̂
of θ̂i, we have ǫnl(f̃n(b)) ≤ 2ηi. Furthermore, by construction, the sum of the
weights with which θi carries λn is bounded by

∫
κi
dλn ≤

∫
κ1
dλn −→

∫
κ1
dλ.

We do the same construction for all the components of Lrec that are not
realised in TS , and denote by f̃n : τ̂1 ∪ τ̂2i → H3 the maps whose restriction
to each connected component of τ̂1 ∪ τ̂2i is the maps thus defined. It follows

from the construction that there is N(i) such that for n ≥ N(i), if b̃ is a

branch of τ̂2i , we have ǫnl(f̃n(b̃)) ≤ 2ηi.

We set τ3i to be the closure of τi − (τ1 ∪ τ2i ), and τ̂
3
i its preimage in H2.

It remains to define f̃n on the branches of τ̂3i . Let b̂ be a branch of τ̂3i . Let

κ̂ and κ̂′ be the two vertical sides of b̂. Their projections κ and κ′ lie in
τ1 ∪ τ2i . Hence their images by f̃n are already defined, and there are two

points x = (x̃n), x
′ = (x̃′n) in T such that f̃n(κ̄) = x̃n and f̃n(κ̄

′) = x̃′n. We

set f̃n to be the map which is constant on each tie of b̂ and takes b̂ to the
geodesic segment joining x̃n to x̃′n. We then have ǫnd(x̃n, x̃

′
n) −→ d(x, x′).

Furthermore, since λ is carried by τ1 ∪ τ2i , we have λn(b) −→ 0. Therefore,

for n large enough, we have λn(b)(ǫnl(f̃n(b̃))) ≤ 2ηi.
Thus we have proved that there is N(i) such that for n ≥ N(i), for a

branch b of τi − τ1, either b is a branch of τ2i and we have ǫnl(f̃n(b̂)) ≤ 2ηi
or b is a branch of τ3i and we have λn(b)(ǫnl(f̃n(b̂))) ≤ 2ηi. Now by choosing
N(i) such that N(i) < N(i+1), and taking a subsequence λN(n) so that the
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n-th term is the original N(n)-th term, we obtain the desired train track.
This concludes the proof of Lemma 4.1. �

5. Finding backtracking

In this section, we are going to show that for large enough n, the path
fn(cn) has long segments in which it comes back nearly parallel to itself.
Eventually these close returns will allow us to construct some long and thin
strips connecting two segments of fn(cn). Here we use the adjective “long”
not only for the rescaled metric of ǫnH

3 but also to mean combinatorially
long in the sense that they go through many branches of τn. Let us fix some
notations and definitions to put this idea into a precise statement.

We consider the train tracks τn and maps f̃n which come from Lemma
4.1. Take a component S of ∂M such that S ∩ τ1 6= ∅. In this section,
we only have to pay attention to the behaviour of λn on S. Therefore, for
simplicity, we denote λn ∩ S by λn, and τn ∩ S by τn, etc. Furthermore, λn
is assumed to be a weighted simple closed curve with support cn and weight
wn.

Let fn : τn −→ H3/ρn(π1(M)) be the projection of f̃n. By construction,
τn carries cn. We set c1n = cn ∩ τ1, c2n = cn ∩ τ2n and c3n = cn ∩ τ3n. We set

c̄jn = fn(c
j
n) for j = 1, 2, 3 and c̄n = fn(cn) = c̄1n ∪ c̄

2
n ∪ c̄

3
n.

Fix an orientation on cn. Let s be a segment lying in c1n with the orienta-
tion induced by that on cn. The train route b(1), ..., b(t) of s is the ordered
finite sequence of branches of τ1 through which s passes: b(i) is an element
of the set {b1, ..., bp} of branches of τ1. We fix an orientation for each branch
of τ1. A branch b(i) in the train route of s is said to be positively oriented
if its orientation coincides with the orientation of s and negatively oriented
otherwise. The oriented train route bo(1), ..., bo(t) of s is the ordered fi-
nite sequence of oriented branches of τ1 through which s goes in this order
with the assigned orientations: bo(i) is an element of {b1, ..., bp} × {+,−}.
When (bo(i))i∈I is an oriented train route, we shall denote by (b(i))i∈I the
corresponding non-oriented train route.

In the following lemma, we shall show that fn(cn) nearly backtracks along
some long path. Using the terms of oriented train routes, this is expressed
as follows.

Lemma 5.1. Under the light assumptions, if (lρn(λ
∗
n)) is bounded, then

there are two infinite oriented train routes bo, bo′ : N → {b1, ..., bp}× {+,−}
in τ1 and functions T, V : N → N such that for any n ∈ N there are two
disjoint segments sn, s

′
n ⊂ c1n satisfying the following:

• T is non-decreasing and unbounded;
• the oriented train routes of sn and s′n are (bo(i))0≤i≤T (n) and
(bo′(i))0≤i≤V (T (n)) respectively;

• there is a homeomorphism gn : fn(sn) → fn(s
′
n);

• gn(fn(v(i))) ∈ fn(b
′(V (i))) for any i ≤ T (n) where v(i) = b(i)∩b(i+

1);
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• any point x ∈ fn(sn) is connected to gn(x) by an essential arc
ζn(x) ⊂Mn with length less than 6ǫ;

• the simple closed curve fn(sn) ∪ ζn(fn(∂sn)) ∪ fn(s
′
n) bounds a disc

Dn containing all the arcs ζn(x) for x ∈ fn(sn).

Recall that λn is assumed to be a weighted simple closed curve with
support cn and weight wn. We denote by c∗n the geodesic representative of
cn in Mn = H3/ρn(π1(M)). Then we set lρn(λ

∗
n) = wnlρn(c

∗
n) by definition.

Notice that we have adopted the conventions that 0 ∈ N, and that if
T (n) = 0, there are no segments sn and s′n.

We shall see that V (i) ≤ iR
′

R
+ 1 for any i ∈ N (equation (2)).

Proof. First we shall show that most points x in c̄1n are close to another
component of c̄1n (i.e. not the component containing x). The proof goes
roughly as follows: we construct a simplicial annulus An between c̄n and c∗n.
If a point x of c̄1n is not close in An to a point in another component of c̄1n
then either x is close to a component of c̄2n or c̄3n or x is not close to any

component of c̄jn for j = 1, 2, 3. Using the Gauss-Bonnet formula and the

length comparison between the components of c̄jn, we shall show that this

can happen only for the minority of the points of c̄jn.

Let us start the formal proof. The curve c̄n = fn(cn) is a piecewise
geodesic. We define the edges of c̄n to be the images of the intersections
of cn with the branches of τn, and the vertices to be the images of the
intersections of cn with the switches of τn.

Let xn,1, ..., xn,pn be the vertices of c̄n, and choose the same number of
points yn,1, ..., yn,pn on c∗n. We shall make a strip with boundaries (xn,i) and
(yn,i) and triangulate it by making each rectangle into a pair of triangles.
To be more precise, for 1 ≤ i ≤ pn, we consider the geodesic triangle with
vertices yn,i, xn,i, xn,i+1 (with xn,pn+1 = xn,1 and yn,pn+1 = yn,1) and the
geodesic triangle with vertices xn,i+1, yn,i, yn,i+1. The union of these trian-
gles for i = 1, . . . , pn is a simplicial annulus An = S1 × [0, 1] bounded by c∗n
and c̄n. The metric νn induced on this annulus by the lengths of paths is a
hyperbolic metric with piecewise geodesic boundary. By the Gauss-Bonnet
formula, the area of An is less than 2pnπ. By Lemma 4.1, the sequence
(wnpn) = (

∑
b: the branches of τn

λn(b)) is bounded. We parametrise An by

S1 × [0, 1] so that the projection of S1 × {1} to H3/ρn(π1(M)) is c∗n.
For a positive number ǫ, which we shall specify later, and each point

x ∈ c̄1n, we consider a geodesic arc ax on (S1×I, νn) perpendicular to S
1×{0}

at x having length ǫ with respect to νn. If the perpendicular reaches S
1×∂I

before the length ǫ is attained, we define ax to be the geodesic arc having
both endpoints on S1 × ∂I.

We shall show that most arcs ax issuing from a component of c̄1n intersect
an arc ay issuing from another component of c̄1n. For this purpose, we are
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going to estimate from below the length of the set of points x for which the
ax reach S1 × {1} without intersecting themselves or each other. Since the
length of this set of points is bounded above by length(c∗n) (with respect to
νn), we get an inequality, which will appear as the inequality (i) below. For
that, we need to subtract from the length of c̄1n the lengths of (I) the set of
points x for which ax has self-intersection, (II) the set of points x for which
ax intersects ay with x 6= y, (III) the set of points x for which ax has an
endpoint on either c̄2n or c̄3n, and (IV) the set of points x which are neither
of type (I) nor of type (II) and for which ax has an endpoint in the interior
of S1 × I. See Figure 1.

I

II

III
IV

c̄1n

c̄1n

c̄1n

c̄2n

c̄3n

xn,1

xn,2

yn,1

yn,2

c∗n

Figure 1. Annulus between c∗n and fn(cn)

We first consider the contribution of the points of type (I) to the length,
i.e., x for which ax intersects itself transversely. By the Gauss-Bonnet for-
mula, a geodesic loop formed by a subarc of ax cannot be null-homotopic.
Hence, there must be a loop formed by a subarc of ax freely homotopic to
S1×{1}. It follows that if both of two perpendiculars ax1 , ax2 with x1 6= x2
have self-intersection, then ax1 ∩ ax2 6= ∅. Thus, the contribution of the set
of x with self-intersecting ax (i.e. of type (I)) to the length is absorbed in
the contribution of x with ax intersecting another ay, that is, of type (II),
which will be dealt with below.

We next consider the points x of type (II), i.e. those for which ax intersects
ay for some y ∈ c̄1n. Let m be a point in the intersection ax ∩ ay, and let
a′x, a

′
y be subarcs of ax, ay between x and m and y and m respectively. Let β

be an arc on c̄n to which a′x∪a
′
y is homotopic fixing the endpoints. Suppose

that β is also contained in c̄1n. We then say that x is an inessential point of
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type (II) and that a′x∪a
′
y is an inessential arc. It was shown in [Bo, Lemme

5.11] that, in this situation, there is a constant ξn depending only on ǫ and
the maximal exterior angle of the vertices on c̄1n, which is less than δn in our
case, such that x is within distance ξn with respect to νn from a vertex of
c̄1n. It was also shown in [Bo] that the constant ξn tends to 0 as either δn or
ǫ goes to 0. If β does not lie on c̄1n, then we say that x is an essential point
of type (II). See Figure 2.

Inessential type II Essential type II

c̄1n
c̄1n

c̄1nc̄1n

c̄2nc̄2n

Figure 2. Inessential and essential points of type II.

We note that the length of an essential arc (such as a′x∪a
′
y) is less than or

equal to 2ǫ. Let c̄+n be the union of the essential points of type (II). We shall
use the essential points of type (II) to construct the long and thin strips of
Lemma 5.1.

Now we shall bound the length of the sets of points of type (III) and (IV).
First we consider the points of type (III). The total length with respect to
νn of the set of points x on c̄1n for which ax reaches a point on c̄2n is bounded
above by the length of c̄2n. Similarly, the total length of the set of points x
for which ax reaches a point on c̄3n is bounded above by the length of c̄3n.

Finally we consider the points of type (IV); the points x such that ax\{x}
is contained in the interior of S1 × I while ax has neither self-intersection
nor intersection with another ay. Since the union of ax for x of type (IV)
has area bounded below by the length of the set of points x of type (IV)
multiplied by sh(ǫ), we can bound the length from above by Area(An)/sh(ǫ).

Putting all of these considerations together, we get an inequality:

(i) lρn(c̄
1
n)− 2pnξn − lρn(c̄

+
n )− lρn(c̄

2
n)− lρn(c̄

3
n)−Area(An)/sh(ǫ) ≤ lρn(c

∗
n).

Notice that we have

wnlρn(c̄
2
n) =

∑

b: branches of τ2n

λn(b)lρn(fn(b))
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and

wnlρn(c̄
3
n) =

∑

b: branches of τ3n

λn(b)lρn(fn(b)).

Therefore, by the property (d) of Lemma 4.1, we have wnlρn(c̄
2
n) = o(ǫ−1

n )
and by the property (e), we have wnlρn(c̄

3
n) = o(ǫ−1

n ).
By Lemma 4.1 (wnpn) is a bounded sequence. It follows that we have

2wnpnξn −→ 0. This implies also that wnArea(An) ≤ 2wnpnπ is a bounded
sequence and that we have ǫnwnArea(An) −→ 0.

By assumption (wnlρn(c
∗
n)) = (ln(λn)) is a bounded sequence; hence

ǫnwnlρn(c
∗
n) tends to 0. Thus we have shown the following.

Claim 5.2. We have wnǫn(lνn(c̄
1
n)− lνn(c̄

+
n )) −→ 0. �

Now that we know that c̄+n occupies the most part of c̄1n, we shall use
c̄+n to construct maps gn and strips Dn. First we define a discrete version
of gn. Let {σ1,n, σ2,n, . . . } ⊂ c̄n be a maximal family of disjoint segments
with diameter 6ǫ such that the midpoint xi,n of σi,n lies in c̄+n . Consider a
segment σi,n and its middle point xi,n. In the family of essential arcs joining
xi,n to c̄1n, we take an arc ai,n to be the shortest (with respect to νn). Since
xi,n lies in c̄+n , the length of ai,n is less than 2ǫ.

If ∂ai,n − xi,n lies in some σj,n, we denote by ζi,n the geodesic segment
in (S1 × I, νi) joining xi,n to xj,n which is homotopic to ai,n relative to
xi,n ∪ σj,n. If ∂ai,n − xi,n is disjoint from

⋃
σj,n, we define ζi,n to be ai,n

(see Figure 3). The length of each segment ζi,n thus obtained is less than
5ǫ. Using the minimality of the lengths of the arcs ai,n, we shall next show
that the segments ζi,n have mutually disjoint interiors.

Consider two different segments ζ1,n and ζ2,n and assume that their inte-
riors intersect. Then the interiors of a1,n and a2,n also intersect. Let y be a
point in the intersection. Let [xℓ,n, y[, ℓ = 1, 2 be the connected component
of aℓ,n − {y} containing xℓ,n. Let γn be the shortest of the two segments
a1,n − [x1,n, y[ and a2,n − [x2,n, y[ (see Figure 3). Then, for ℓ = 1, 2, the
length of the arc [xℓ,n, y]∪γn is less than or equal to the length of aℓ,n. Fur-
thermore one of the two arcs [xℓ,n, y]∪γn, say [x1,n, y]∪γn is not the shortest
in its homotopy class relative to the endpoints. Let a′1 be the shortest arc
homotopic to [x1,n, y]∪ γn relative to the endpoints. Then the length of the
segment a′1 (with respect to νn) is less than the length of a1,n. Recall that
we chose a1,n which is shortest among all essential arcs joining x1,n to c̄1n. It
follows that a′1 is not essential, i.e. there is a segment β ⊂ c̄1n homotopic to
a′1 relative to the endpoints. The endpoints of β are x1,n and another point
which we call y1. The distance (with respect to νn) between x1,n and y1 is
less than the length of a′1 which is less than 2ǫ. By the properties (b) and
(c), each component of c̄1n (in particular the one containing β) is a union of
long geodesic segments such that the exterior angle between two consecutive
segments is small. By [CEG, Lemma 4.2.10] such a component of c̄1n is a
(K, η)-quasi-geodesic with K→1, η→0 as n→∞. It follows that there is N
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(independent of β) such that for n ≥ N , the length of β is less than 3ǫ. This
implies that y1 lies in σ1,n. By our definition of ζ1,n, it has an endpoint on
x1,n, not on y1 (see Figure 3). This contradicts our assumption that the
interiors of ζ1,n and ζ2,n intersect.

x1,n

x1,n

y1

y

x2,n

x2,n

c̄n

c̄nσ1,n

σ1,n

σ2,n

σ2,n

c∗n

c∗n

a2,n

a1,n

ζ2,n

ζ1,n

γn

Figure 3. From ai,n to ζi,n

Even if some segment ai,n has a self-intersection, the same argument shows
that ζi,n does not have any self-intersection.

Thus we have proved the following claim.

Claim 5.3. There are a map hn : {x1,n, x2,n, ...} → c̄1n and a family (ζi,n)
of essential segments with disjoint interiors such that the length of ζi,n is
less than 5ǫ, ∂ζi,n = {xi,n, hn(xi,n)}, and {hn(x1,n), hn(x2,n), ...} ∩

⋃
i σi,n ⊂

{x1,n, x2,n, ...}. �

We shall use those segments ζi,n as a skeleton to construct our strips Dn.
To this end we need to fill the space between two consecutive segments ζi,n
and ζi+1,n with a thin strip. In particular, we need to check that ζi,n and
ζi+1,n are in the same homotopy class and that each point of c̄1n between
xi,n and xi+1,n is close to a point on c̄n between hn(xi,n) and hn(xi+1,n).
Our proof will rely mainly on counting segments. Namely we start with
sufficiently many segments and prove that at each step,there are only few



30 INKANG KIM, CYRIL LECUIRE AND KEN’ICHI OHSHIKA

among them which fail to satisfy the property that we need.

Let j be a positive integer, and cut c̄1n into disjoint segments s̄1,n, s̄2,n, ...,
each containing j edges (if the number of edges of some component of c̄1n is
not a multiple of j, then there are some edges of c̄1n not belonging to any
one of these segments).

We shall evaluate the number of segments thus obtained using the follow-
ing claim.

Claim 5.4. Let rn be the number of the components of c̄1n. Then, wnrn −→ 0
as n→ ∞.

Proof. Note that any train route on τn connecting a point in τ1 and a point
in τ2n must pass through a point in τ3n. Therefore between any two distinct
components of c1n, there is a component of c3n. Hence (wnrn) is bounded
above by

∑
b⊂τ3n

λn(b). Since |λ| ⊂ Lrec is carried by τ1 ∪ τ2n, the sum∑
b⊂τ3n

λn(b) tends to 0 as n→ ∞. It follows that we have wnrn −→ 0. �

Since

wn(number of edges of c̄1n) = wn(
∑

b⊂τ1

cn(b)) −→
∑

b⊂τ1

λ(b),(1)

the number of edges of c̄1n is Θ(w−1
n ) = Θ(pn) (see Section 2.4 for notations),

where pn was defined to be the number vertices on c̄n (i.e. the number of
times cn crosses a switch of τn). The number of edges of c̄1n lying in none of
the s̄i,n is less than jrn = o(pn). It follows that the number of the segments
s̄i,n is Θ(pn).

Let tn be the number of edges of c̄1n containing no one among the segments
σi,n defined earlier. If an edge e contains no segment among the σi,n, then
there is no point of c̄+n in e outside the 3ǫ-neighbourhood of ∂e. By the prop-
erty (b) in Lemma 4.1, the total length of these edges is greater than tnRǫ

−1
n

and smaller than lνn(c̄
1
n) − lνn(c̄

+
n ) + 6tnǫ. By Claim 5.2 and the equation

(1), we have wnǫn(lνn(c̄
1
n)− lνn(c̄

+
n ) + 6tnǫ) −→ 0. Hence wnǫntnRǫ

−1
n −→ 0

and tn is o(w−1
n ) = o(pn).

Thus we know that among the s̄i,n, there are Θ(pn) disjoint segments
lying in c̄1n and containing j edges (where j is the number we have fixed
when cutting c̄1n) each of which contains a segment among the σi,n. We shall
denote these Θ(pn)-many segments again by s̄1,n, s̄2,n, . . . .

Next we shall show that most of these segments are joined to only one
component of c̄1n through the arcs ζi,n.

Let s̄ ∈ {s̄1,n, s̄2,n, . . . } be a segment with the following property: there
are at least two distinct components of c̄1n containing an endpoint of ζi,n for
some xi,n ∈ s̄. Let t′n be the number of those with this property among the
s̄i,n. In each such segment s̄, we choose two points in {x1,n, x2,n, ...} ∩ s̄,
say x1,n, x2,n, such that ζ1,n and ζ2,n connect s̄ to distinct components of c̄1n
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and the segment ]x1,n, x2,n[⊂ s̄ contains no xk,n. We note that there may
be ζi,n other than ζ1,n, ζ2,n which have x1,n or x2,n as an endpoint. There
are two points y1,n and y2,n which lie in two distinct components of c̄1n such
that y1,n (resp. y2,n) is connected to x1,n or x2,n by some ζi,n and that y1,n
and y2,n are innermost in the following sense : if [y1,n, y2,n] is the segment
of c̄n joining y1,n to y2,n whose interior does not contain x1,n, then there
is no ζi,n connecting ]y1,n, y2,n[ to {x1,n, x2,n} (these y1,n, y2,n may or may
not coincide with hn(x1,n), hn(x2,n)). Let us embed An into a round disc in
such a way that c̄n is the boundary of the disc, and connect y1,n to y2,n by a
geodesic segment with respect to the ordinary Euclidean metric on the disc.

Assume that for another segment s̄′ ∈ {s̄1,n, . . . } with the same property,
the resulting geodesic segment in the round disc intersects transversely the
geodesic segment produced from s̄ above (i.e. the geodesic segment con-
necting y1,n to y2,n). Suppose that x3,n and x4,n are the points on s̄′ chosen
in the same way as x1,n, x2,n for s̄. We number them so that the order in
which the four points lie on the circle is x1,n, x2,n, x3,n, x4,n. Since ζi,n have
disjoint interiors and y1,n and y2,n are innermost, we see that the only ways
this can happen are the following two: (1) x3,n = y1,n and (2) x4,n = y2,n.
Therefore for each s̄, there are only two configurations of s̄′ such that the
geodesics in the round disc intersect transversely. See Figure 4.

Thus we can build at least 1
3 t

′
n disjoint geodesic segments in the round

disc, each connecting two distinct components of c̄1n. Furthermore, since
the ζi,n have disjoint interiors, any pair of connected components of c̄1n is
connected by at most two of these disjoint segments. Consider a map from
c̄n to a round circle which preserves the order and maps each connected
component Ci of c̄

1
n to a point Qi. Join two points Qi and Qj by a segment

if and only if there is one of the segments constructed above which joins
Ci and Cj . Thus we have constructed at least 1

6 t
′
n segments with disjoint

interiors. We can now add some geodesic segments in the disc to get a
triangulation of the polygon with vertices Q1, ..., Qrn . Such a triangulation
has 2rn − 3 edges (this can easily be computed with the Euler formula).
Therefore we have 1

6 t
′
n ≤ 2rn − 3 = o(pn).

Since we initially had Θ(pn) segments {s̄1,n, s̄2,n, ...}, after excluding o(pn)
segments as above from them, there remains, by abusing notations again,
Θ(pn) disjoint segments {s̄1,n, s̄2,n, ...} in c̄1n, such that if s̄ is one of those
segments, then we have:

- s̄ contains j edges;
- i) each edge of s̄ contains some xi,n;
- ii) there is a unique component C (depending on s̄) of c̄1n such that for

any xi,n ∈ s̄, we have hn(xi,n) ∈ C.

Let s̄ be one of these segments, C the associated component of c̄1n, and x
a point of s̄∩{x1,n, ...}. Denote by ζx the corresponding segment ζi,n. Since
An is an annulus and ζx is embedded, there are only two possibilities for
the homotopy class of ζx relative to s̄ ∪ C. Therefore, taking 2j instead of
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x2,n

x2,n

x1,n

x1,n

y1,n = x3,n

y1,n = x3,n

x4,n

x4,n

y4,n

y4,n

y2,n

y2,n

s̄

s̄′

Figure 4. A segment intersects at most two other segments

j at the beginning and cutting each segment into two groups, we get Θ(pn)
disjoint segments {s̄1,n, ...} in c̄1n, each one containing j edges and satisfying
(i), (ii) above and:

iii) for any x, y ∈ s̄ ∩ c̄+n , ζx and ζy are homotopic relative to s̄ ∪ C.
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Now we have a sufficiently number of j consecutive segments σi,n with
the properties (i), (ii) and (iii). Next we shall show that they lie in the
boundary of the expected strips Dn.

Let s̄ be one of the segments produced above, and C the corresponding
component of c̄1n in the property (ii). Let x and y be the extremal points of
s̄ ∩ {x1,n, ...}, and [x, y] the segment in s̄ joining x to y. The segment [x, y]
contains at least (j − 2) edges. We have the following:

Lemma 5.5. There is N ∈ N which does not depend on s̄ such that for
any n ≥ N we have the following by homotoping An keeping ∂An and c̄in
unchanged:
There is a homeomorphism gn : [x, y] → [hn(x), hn(y)] such that for any
n ≥ N and any z ∈ [x, y], the two points z and gn(z) are connected by an
essential arc whose length (with respect to the induced metric νn on An) is
less than 6ǫ.

Proof. By the property (iii), the simple closed curve ζx∪[x, y]∪ζy∪[hn(x), hn(y)]
bounds a disc in An. Since both [x, y] and [hn(x), hn(y)] lie in c̄1n, by the
properties (b) and (c) in Lemma 4.1, they consist of long geodesic segments
such that the external angles formed by two adjacent segments are less than
δn. Let k be the geodesic segment in H3/ρn(π1(M)) joining x to y which is
homotopic to [x, y], and let k′ be the one in H3/ρn(π1(M)) joining hn(x) to
hn(y) which is homotopic to [hn(x), hn(y)]. We parametrise the arcs [x, y],
[hn(x), hn(y)], k and k′ by their arc lengths.

By [CEG, Lemma 4.2.10], for sufficiently large n, we have
d([x, y](t), k(t)) ≤ ǫ′n and d([hn(x), hn(y)](t), k

′(t)) ≤ ǫ′n for any t with

ǫ′n −→ 0. It follows that 1 ≤
l([x, y])

l(k)
≤

l(k) + ǫ′n
l(k)

≤ 1 + ǫ′n and that

1 ≤
l([hn(x), hn(y)])

l(k′)
≤ 1+ ǫ′n for sufficiently large n, where l(.) denotes the

length in H3/ρn(π1(M)). Therefore, we have d([x, y](
l([x, y])

l(k)
t), k(t)) ≤ 2ǫ′n

for sufficiently large n. For the same reason, we have also

d([hn(x), hn(y)](
l([hn(x), hn(y)])

l(k′)
t), k′(t)) ≤ 2ǫ′n.

By the property (iii), the simple closed curve ζx∪k∪ζy∪k
′ bounds a disc.

Since k and k′ are geodesic segments, the function d(k(t), k′( l(k
′)

l(k) t)) is convex.

Therefore we have d(k(t), k′( l(k
′)

l(k) t)) ≤ 5ǫ for any t since d(x, hn(x)) ≤ 5ǫ and

d(y, hn(y)) ≤ 5ǫ.
We define gn : [x, y] → [hn(x), hn(y)] by the following formula

gn([x, y](
l([x,y])
l(k) t)) = [hn(x), hn(y)](

l([hn(x),hn(y)])
l(k) t). Setting z = [x, y]( l([x,y])

l(k) t),

the distance d(z, gn(z)) is less than the following quantity

d([x, y](
l([x, y])

l(k)
t), k(t)) + d(k(t), k′(

l(k′)

l(k)
t))
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+d(k′(
l(k′)

l(k)
t, [hn(x), hn(y)](

l([hn(x), hn(y)])

l(k)
t)).

Then we get d(z, gn(z)) ≤ 5ǫ+4ǫ′n. Now we conclude by taking N such that
4ǫ′n ≤ ǫ for n ≥ N and by changing An by a homotopy so that the geodesic
segment ζn(z) connecting z to gn(z) lies in An for any z in s̄. �

Now we return to the proof of Lemma 5.1. We remove from s̄ its two
extremal edges so that gn is defined on the entire s̄ (and we say that s̄
originally had j + 2 edges so that it now has j edges). By the equation (1),

there is a constant R′ such that for any branch b̂ of τ̂1, we have l(f̃n(b̂)) ≤
R′ǫ−1

n . By Lemma 5.5 and since δn −→ 0 as n → ∞, we have lρn(gn(s̄)) ≤
lρn(s̄) + 13ǫ ≤ jR′ǫ−1

n + 13ǫ. Therefore if we let j′n be the number of edges
contained in gn(s̄), we have

j′n ≤ j(
R′

R
) + 1(2)

for large n, where R is the constant in (b) of Lemma 4.1.
Since τ1 has only finitely many branches, once j is fixed, there are only

finitely many possibilities for the oriented train routes of s̄ and of gn(s̄). Thus
we can find Θ(pn)-many disjoint segments {s̄1,n, ...} with the properties (i),
(ii) and (iii), having the same oriented train route, such that the segments
gn(s̄) also have the same oriented train route for all s̄ ∈ {s̄1,n, . . . }.

Now we fix j and extract a subsequence so that the oriented train routes
of s̄i,n and gn(s̄i,n) do not depend on n.

By the same arguments, we can construct segments containing j+1 edges,
j +2 edges and so on. To avoid difficulties in the next part of the proof, we
want to ensure that the segment containing j edges which we have chosen
is contained in the segment with j + 1 edges as its first j segments. For
that, to each s̄i,n, we add the edge of c̄n which is adjacent to the last (with
respect to the orientation of s̄i,n) edge of s̄i,n. In this family of segments,
take a maximal family of disjoint segments lying in c̄1n, which we denote by
{s̄+1,n, s̄

+
2,n, ...}. By Claim 5.4 and the argument after that, there are only

o(pn) segments among {s̄1,n, . . . } for which the added edge lies outside of c̄1n.
Therefore the number of segments in {s̄+1,n, . . . } is Θ(pn). It follows from the

arguments we used for the segments s̄i,n that among the segments s̄+i,n there

are Θ(pn) segments which have the properties (i), (ii) and (iii). The proof
of Lemma 5.5 applies to these Θ(pn) segments, yielding an homeomorphism
gn which can be chosen to coincide with the one defined on the segments
s̄i,n when restricted to them.

From this last family, we take Θ(pn) segments s̄+i,n such that the oriented

train routes of s̄+i,n and gn(s̄
+
i,n) do not depend on i. Then we extract a

subsequence (with respect to n) such that for sufficiently large n, the oriented
train routes of s̄+i,n and of gn(s̄

+
i,n) do not depend on n.
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By doing this argument recursively, increasing j one by one, we complete
the proof of Lemma 5.1. �

6. Commuting elements

In this section, we shall use the results of the preceding sections to con-
struct a sequence of discs which cross λ less and less. This way, we shall
obtain a homoclinic simple geodesic which does not cross λ.

Using Lemma 5.1, it is easy to observe that for j (the number of edges that
sn contains) large enough, sn and s′n come back simultaneously to a branch
of τ1. Still, the fact that the edges of c̄1n are very long makes it difficult
to turn this observation into an actual construction. Instead we shall use
Lemma 5.1 to construct two sequences an, a

′
n of elements of π1(∂M) which

have nearly the same actions on some rather large part of f̃n(τ̂1). By results
of Kapovich ([Ka]) this implies that the images of an and a′n in π1(M)
commute and therefore correspond to an annulus. Then we shall construct
discs as we want by adding some waves.

Recall that given an oriented train route (bo(i))i∈N, we denote by (b(i))i∈N
the corresponding non-oriented train route. Since, by Lemma 5.1, for any t,
the simple closed curve cn goes through the oriented train routes (bo(i))i≤t
and (bo′(i))i≤t in τ

1 for n large enough, there are two half-leaves l+ and l′+
of the realised part of Lrec whose oriented train routes are (bo(i))i∈N and
(bo′(i))i∈N respectively.

Let e ∈ N be a natural number which we shall specify later, and let
ϕ : N → N be an increasing function such that:

(φ1) bo(ϕ(i) + j) = bo(ϕ(0) + j) for any i ∈ N and any 0 ≤ j ≤ e, i.e. the
same train route (bo(ϕ(0) + j))0≤j≤e is repeated starting from each
ϕ(i).

(φ2) bo′(V (ϕ(i)) + j) = bo′(V (ϕ(0)) + j) for any i ∈ N and any 0 ≤ j ≤
V (e), where V is the function which appeared in Lemma 5.1.

(φ3) Suppose that l+ (resp. l′+) is not a closed curve, and let k0,i be a
sub-arc of l+ with train route (b(j))ϕ(0)≤j<ϕ(i) (resp. k′0,i the arc

of l′+ with train route (b′(i))V (ϕ(0))≤i<V (ϕ(i))). The two endpoints of

k0,i (resp k
′
0,i) lie in the same switch of τ1 and the sequences (∂k0,i)

(resp. ∂k′0,i) converges to a single point with respect to the Hausdorff
topology as i −→ ∞.

The existence of such a function ϕ follows from the fact that the number
of branches and switches of τ1 is finite. See Figure 5.

We define ψ : N → N as follows: ψ(i) is the largest integer such that
ϕ(ψ(i)) ≤ i. Since ϕ is not surjective, it does not have an inverse function,
and we use ψ instead. Set ψn = ψ(T (n) − e) for the function T which
appeared in Lemma 5.1. Note that if we forget the condition (φ3), then
ψn + 1 is the number of times that sn comes back to the oriented train
route (bo(k))ϕ(0)≤k≤e+ϕ(0) and s′n comes back to the oriented train route
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k0,1

bo(ϕ(1))

bo(ϕ(0))

bo(ϕ(1) + e)

bo(ϕ(0) + e)

Figure 5. Repeating the train route (bo(ϕ(0) + j))0≤j≤e.

(bo′(k))V (ϕ(0))≤k≤V (ϕ(0))+V (e) at the same time. Since ϕ is increasing and T
is unbounded, (ψn) is unbounded.

Let us denote by b′ the branch bo′(V (ϕ(0))). By Lemma 5.1, for any i ≤
ψn, we have gn◦fn◦v(ϕ(i)) ∈ fn(b

′(V (ϕ(i))) = fn(b
′). It follows that, for any

n large, there are in, jn ≤ ψn such that the distance between gn◦fn◦v(ϕ(in))
and gn ◦ fn ◦ v(ϕ(jn)) measured on fn(b

′) is at most 1
ψn
lρn(fn)(b

′) = o(ǫ−1
n ).

Allowing gn ◦ fn ◦ v(ϕ(in)) and gn ◦ fn ◦ v(ϕ(jn)) to be a bit further from
each other, we can still keep their distance to be o(ǫ−1

n ) while assuming that
jn − in −→ ∞.

We pick such sequences (in) and (jn), i.e. for each n, we take two indices
in < jn ≤ ψn such that jn − in −→ ∞ and the distance between gn ◦ fn ◦
v(ϕ(in)) and gn ◦ fn ◦ v(ϕ(jn)) measured on fn(b

′) is o(ǫ−1
n ). We denote

by In ⊂ sn the segment between v(ϕ(in)) and v(ϕ(jn)) and by Jn be the
sub-segment of sn consisting of the e vertices following v(ϕ(jn)).

Let s̃n ⊂ H3 be a lift of fn(sn), and let ṽ(ϕ(in)), ṽ(ϕ(jn)), Ĩn and J̃n
be lifts of fn ◦ v(ϕ(in)), fn ◦ v(ϕ(jn)), fn(In) and fn(Jn) respectively, lying
on s̃n. We lift the map gn to a map g̃n from s̃n to a lift s̃′n of fn(s

′
n). Let

ρn(an) ∈ ρn(π1(M)) be the covering translation which takes f̃n(b̃(ϕ(in)) to

f̃n(b̃(ϕ(jn)). Since bo(ϕ(in) + j) = bo(ϕ(jn) + j) for all j ≤ e, the isometry

ρn(an) acts as a translation on Ĩn ∪ J̃n.
Let Ĩ ′n ⊂ s̃′n be the piecewise geodesic segment between g̃n ◦ ṽ(ϕ(in))

and g̃n ◦ ṽ(ϕ(jn)), and let J̃ ′
n ⊂ s̃′n be the segment between g̃n ◦ ṽ(ϕ(in))

and g̃n ◦ ṽ(ϕ(jn) + e). Let ρn(a
′
n) ∈ ρn(π1(M)) be the covering translation

which takes f̃n(b̃
′(V (ϕ(in))) to f̃n(b̃

′(V (ϕ(jn))). From the assumption that
bo′(V (ϕ(in)) + j) = bo′(V (ϕ(jn)) + j) for any 0 ≤ j ≤ V (e), it follows that

ρn(a
′
n) acts as a translation on Ĩ ′n ∪ J̃

′
n. See Figure 6.

By our choice of in, jn, we have

d(g̃n ◦ ṽ(ϕ(jn)), ρn(a
′
n) ◦ g̃n ◦ ṽ(ϕ(in)) = o(ǫ−1

n ).

From this together with the facts that ρn(an) acts as a translation on Ĩn∪ J̃n
and that ρn(a

′
n) acts as a translation on Ĩ ′n∪J̃

′
n, we shall deduce the following

claim:
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ṽ(ϕ(in))

ṽ(ϕ(jn))

Ĩn

J̃n

s̃n

g̃n

ρn(an)

g̃n(ṽ(ϕ(in)))

g̃n(ṽ(ϕ(jn)))

s̃′
n

ρn(a
′

n
)

Ĩ ′
n

J̃ ′

n

Figure 6. Commuting isometries

Claim 6.1. For R > 0, let VR(J̃n) be the R-neighbourhood of J̃n, then for

any sequence of points z̃n ∈ VR(J̃n), we have that d(z̃n, ρn(a
−1
n a′n)(z̃n)) is

o(ǫ−1
n ).

Proof. It is sufficient to prove this claim for any sequence (z̃n) lying on J̃n.

Since ρn(a
−1
n ) acts as a translation on Ĩn ∪ J̃n, the point ρn(a

−1
n )(z̃n) is the

point z̃′n ∈ Ĩn with

d(z̃n, ṽ(ϕ(jn))) = d(z̃′n, ṽ(ϕ(in))),(3)

where d denotes the distance measured on Ĩn ∪ J̃n. The point z̃′′n = ρn(a
′
n) ◦

g̃n(z̃
′
n) ∈ J̃ ′

n is at the distance d(g̃n(z̃
′
n), g̃n◦ṽ(ϕ(in)) from ρn(a

′
n)◦g̃n◦ṽ(ϕ(in))

(measured on Ĩ ′n ∪ J̃ ′
n). As we saw above, d(g̃n ◦ ṽ(ϕ(jn)), ρn(a

′
n) ◦ g̃n ◦

ṽ(ϕ(in))) = o(ǫ−1
n ). Therefore we have d(z̃′′n, g̃n ◦ ṽ(ϕ(jn))) = d(g̃n(z̃

′
n), g̃n ◦

ṽ(ϕ(in))) + o(ǫ−1
n ).

By Lemma 5.1, g̃n moves each point within distance 6ǫ, and hence we get
the equality

d(z̃′′n, g̃n ◦ ṽ(ϕ(jn))) = d(z̃′n, ṽ(ϕ(in))) + o(ǫ−1
n ).

Using equation 3, we get

d(z̃′′n, g̃n ◦ ṽ(ϕ(jn))) = d(z̃n, ṽ(ϕ(jn)) + o(ǫ−1
n ).
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Since J̃n and J̃ ′
n are within the Hausdorff distance 6ǫ from each other, we

have

d(z̃′′n, z̃n) = o(ǫ−1
n ).

By the triangle inequality

d(ρn(a
′
na

−1
n )(z̃n), z̃n) ≤ d(z̃n, z̃

′′
n) + d(z̃′′n, ρn(a

′
na

−1
n )(z̃n)).

and by z̃′′n = ρn(a
′
n) ◦ g̃n ◦ ρn(a

−1
n )(z̃n) we get

d(z̃′′n, ρn(a
′
na

−1
n )z̃n) = d(ρn((a

′
n)

−1)z̃′′n, ρn(a
−1
n )z̃n)

= d(g̃n ◦ ρn(a
−1
n )(z̃n), ρn(a

−1
n )(z̃n)) = o(ǫ−1

n ).

Thus we finally get d(ρn(a
′
na

−1
n )(z̃n), z̃n) = o(ǫ−1

n ). �

We note that, as can be seen in the proof, the o(ǫ−1
n ) is “uniform”, namely

there is a sequence δn −→ 0 independent of (z̃n) such that
d(ρn(a

′
na

−1
n )(z̃n), z̃n) ≤ δnǫ

−1
n .

We shall use this claim to prove the following lemma.

Lemma 6.2. There is N ∈ N such that for n ≥ N , ρn(a
−1
n a′n) = id.

The main argument in the proof is the following.

Lemma 6.3. Let [Pn, Qn] ⊂ H3 be a sequence of geodesic segments between
Pn and Qn such that l([Pn, Qn]) is Θ(ǫ−1

n ) and let (δn), (δ
′
n) ⊂ π1(M) be

two sequences such that the distances d(Pn, ρn(δn)(Pn)), d(Pn, ρn(δ
′
n)(Pn)),

d(Qn, ρn(δn)(Qn)) and d(Qn, ρn(δ
′
n)(Qn)) are all o(ǫ−1

n ). Then there is N
such that for n ≥ N , [ρn(δn), ρn(δ

′
n)] = id.

Proof. This comes directly from the arguments which Kapovich used in [Ka,
Theorem 10.24] to prove that the minimal action of π1(M) on R-tree is small
(see [Ka, p.239]). �

Proof of Lemma 6.2. Set e = 2p+ 1 where p is the number of the branches
of τ1. If we fix some n ∈ N, by our choice of e, we can find two different
integers i1 and i2 between ϕ(jn) and ϕ(jn) + e such that bo(i1) = bo(i2).
Let Kn ⊂ Jn be the segment of sn with train route (b(k))i1≤k≤i2 , and let
δn ∈ π1(M) be an element which takes ṽ(i1) to ṽ(i2). Since i1, i2 do not
depend on n, the element δn does not depend on n either. Let us denote
it by g. The isometry ρn(g) acts as a translation on the lift K̃n of fn(Kn)
which lies in s̃n.

Let K̃n− and K̃n+ be the two extremal edges of K̃n, such that ρn(g) takes

K̃n− to K̃n+. By Claim 6.1, the translation length of ρn(a
−1
n a′n) is o(ǫ−1

n )

on Ĩn ∪ J̃n. By the same arguments, the translation length of ρn(a
′−1
n an) is

also o(ǫ−1
n ) on Ĩn ∪ J̃n. It follows that:

• for any sequence z̃n ∈ VR(K̃n+), d(z̃n, [ρn(a
−1
n a′n), ρn(g)](z̃n)) =

o(ǫ−1
n );
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• for any sequence z̃n ∈ VR(K̃n−), d(z̃n, [ρn(g
−1), ρn(a

−1
n a′n)](z̃n)) =

o(ǫ−1
n );

• for any sequence z̃n ∈ VR(K̃n+), d(z̃n, [ρn(g), ρn(a
′−1
n an)](z̃n)) =

o(ǫ−1
n ).

Since K̃n+ and K̃n− are edges of c̄1n, their lengths are Θ(ǫ−1
n ). Applying

Lemma 6.3 to the segments K̃n− and K̃n+, we see that for sufficiently
large n, [ρn(a

−1
n a′n), ρn(g)], [ρn(g

−1), ρn(a
−1
n a′n)] and [ρn(g), ρn(a

′−1
n an)] com-

mute with ρn(a
−1
n a′n). Therefore they belong to an elementary subgroup of

ρn(π1(M)). By [Ka, p.239], it follows that the group generated by ρn(a
−1
n a′n)

and ρn(g) is elementary.
Since i1 6= i2, the distance of translation of ρn(g) is Θ(ǫ−1

n ). Since the
group generated by ρn(a

−1
n a′n) and ρn(g) is elementary, there are d ∈ π1(M),

t, tn ∈ N such that g = dt and a−1
n a′n = dtn . Since the translation distance

of ρn(g) is Θ(ǫ−1
n ), so is the translation distance of ρn(d). By Lemma 6.1

however, the translation distance of ρn(a
−1
n a′n) is o(ǫ

−1
n ). Therefore we have

ρn(a
−1
n a′n) = id for sufficiently large n. �

Now we are ready to construct the homoclinic geodesic which was an-
nounced at the beginning of the section.

Lemma 6.4. Under the light assumptions, assume that lρn(λ
∗
n) is bounded,

then there is a homoclinic simple geodesic which does not cross |λ|.

Proof. Recall that, earlier in this section, we have picked a lift s̃n ⊂ H3

of fn(sn), and lifts ṽ(ϕ(in)), ṽ(ϕ(jn)) of fn ◦ v(ϕ(in)) and fn ◦ v(ϕ(jn))
respectively, lying on s̃n. We have also lifted the map gn to a map g̃n from
s̃n to a lift s̃′n of fn(s

′
n) and we have defined an, a

′
n ∈ π1(M).

To simplify the notations, set x̃n = ṽ(ϕ(in) and ỹn = ṽ(ϕ(jn). Recall that
ỹn = ρn(an)(x̃n). By Lemma 6.2, ρn(an)(g̃n(x̃n)) = ρn(a

′
n)(g̃n(x̃n)), which

implies that ρn(an)(g̃n(x̃n)) lies on the same component of c̄1n as g̃n(ỹn). It

follows that we can change An so that ρn(an)(ζ̃n(x̃n)) (recall that ζ̃n(xn) is

a short segment in Ãn which joins x̃n to g̃n(x̃n)) lies in Ãn. For the sake of

simplicity, we set ζ̃n(ỹn) = ρn(an)(ζ̃n(x̃n)).

Denote by k̃n the segment of c̃n which is mapped by f̃n to an arc joining x̃n
to ỹn, namely ∂f̃n(k̃n) = {x̃n, ỹn}. Similarly denote by k̃′n the segment of c̃n
which is mapped by f̃n to an arc joining ζ̃n(x̃n) to ζ̃n(ỹn). By construction,

k̃n and k̃′n lie in lifts of sn and s′n respectively and goe through the train
routes (bo(i))ϕ(in)≤i<ϕ(jn) and (bo′(i))V (ϕ(in))≤i<V (ϕ(jn)) respectively.

The arcs f̃n(k̃n), f̃n(k̃
′
n), ζ̃n(x̃n) and ζ̃n(ỹn) bound a disc R̃n in Ãn (by

Lemma 5.1) and all of their endpoints lie on the same component f̃n(c̃n) of

∂Ãn. It follows that one component of Ãn− R̃n is a disc D̃n. The boundary
of this disc is the union of an arc d̃n ⊂ f̃n(c̃n) and ζ̃n(x̃n) or ζ̃n(ỹn). See
Figure 7.



40 INKANG KIM, CYRIL LECUIRE AND KEN’ICHI OHSHIKA

g̃n(x̃n)

g̃n(ỹn)

x̃n

ỹn

d̃n

c̄n

c̃∗n

D̃n

Figure 7. The innermost disc D̃n

Let us fix a reference hyperbolic metric on ∂M . The endpoints of kn
(resp. k′n) are connected by an arc κn (resp. κ′n) which lies on a switch of
τ1. By Lemma 6.2, the closed curves kn ∪ κn and k′n ∪ κ

′
n are homotopic in

M . In particular they bound an annulus En in M .
Consider the projection dn ⊂ cn of the arc which is mapped to d̃n by

f̃n. The closed curve mn = κnkndnk
′−1
n κ′−1

n d−1
n (with appropriate choices of

orientation) bounds a (possibly singular) disc which is the union of En and

two copies of the projection Dn of D̃n (see Figure 8).
Since both jn − in and in can be assumed to go to ∞, it follows from

the property (φ3) that the length of κn tends to 0 (with respect to our
reference metric on ∂M). It follows that

∫
mn

dλn −→ 0. By the proof of

the Loop Theorem (see [He] for example), there is a meridian m′
n such that

i(m′
n, λn) −→ 0. By Casson’s criterion (Theorem 2.4) this concludes the

proof of Lemma 6.4. �
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κn

kn

dn

mn

Figure 8. The curve mn

7. Conclusion

In this section, we shall complete the proofs of Theorem 2 and 1.

Proof of Theorem 2. Now we complete the proof of Theorem 2. Let ρn, λn
and λ be as in Theorem 2. If no subsequence of (ρn) converges algebraically,
it follows from Lemma 4.1 that ρn and λn satisfy the light assumptions.
Moreover lρn(λn) is bounded by assumption. By Lemma 6.4, there is a
homoclinic geodesic which does not intersect |λ| transversely. By Lemma
2.6, this contradicts the assumption that λ ∈ D(M). �

We shall now deduce Theorem 1 from Theorem 2.

Theorem 1. Let M be a compact irreducible atoroidal 3-manifold with
boundary. Let (mn) be a sequence in the Teichmüller space T (∂M) which
converges in the Thurston compactification to a projective lamination [λ]
contained in PD(M). Let q : T (∂M) → GF0(M,P ) be the Ahlfors-Bers
map, and suppose that (ρn : π1(M)→PSL(2,C)) is a sequence of discrete
faithful representations corresponding to (q(mn)). Then passing to a subse-
quence, (ρn) converges in AH(N).

Proof. For a simple closed curve c ⊂ ∂M , we denote by lmn(c) the length of c
with respect to the metric mn and by lρn(c) the length of the closed geodesic
of H3/ρn(π1(M)) in the free homotopy class of c. By [Th2, Theorem 2.2]
(see also [FLP]), there is a sequence of simple closed curves cn ⊂ ∂M whose

projective classes converge to [λ] in PML(∂M) such that
lmn(cn)

lm0
(cn)

tends to

0 as n→ ∞.
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Using the following result of [BrC], we shall get an upper bound for the
sequence (lρn(λn)).

Theorem C [Bridgeman-Canary] For any Q > 0, there is a constant K >
0 depending only on Q with the following properties. Let Γ be a finitely
generated Kleinian group without torsion such that the shortest length of
the meridians with respect to the compatible hyperbolic structure on ΩΓ/Γ
is greater than Q. Let C(Γ) be the convex core of H3/Γ, and consider the
nearest point retraction r : ΩΓ/Γ → ∂C(Γ). Then r is K-Lipschitz and has
a homotopically inverse K-Lipschitz map.

Let us first verify that we are considering a situation where the hypothesis
of this theorem is fulfilled.

Lemma 7.1. There is a positive number Q such that lmn(d) ≥ Q for any
meridian d of ∂M .

Proof. Assuming the contrary, we have a sequence of meridians (dn) such
that (lmn(dn)) tends to 0. Let us extract a subsequence so that (dn) con-
verges with respect to the Hausdorff topology to a geodesic lamination
D ⊂ M . By Casson’s criterion, D contains a homoclinic leaf. Since
[λ] ∈ PD(M), the lamination D intersects the support of [λ] transversely
(Lemma 2.6). It follows that the sequence i(λ, dn) is bounded away from
0. This implies that the sequence lmn(dn) tends to ∞. Thus we get a
contradiction. �

It is clear that the length lρn(c
∗
n) is less than the length of any curve in

∂C(ρn(π1(M))) which is freely homotopic to cn. Thus, applying Theorem

C, we see that
lρn(c

∗
n)

lm0
(cn)

tends to 0.

Let us denote by λn the measured geodesic lamination obtained by en-
dowing cn with a Dirac measure whose weight is equal to lm0

(cn)
−1. The

sequence λn converges in ML(∂M) to a measured geodesic lamination λ

which lies in the projective class [λ]. Since
lρn(c

∗
n)

lm0
(cn)

tends to 0, we have

lρn(λn) −→ 0. Since λ lies in the projective class [λ] ∈ PD(M), the mea-
sured geodesic lamination λ lies in D(M). Applying Theorem 2, we see that
a subsequence of (ρn) converges algebraically. �

8. Appendix

For the sake of completeness, we shall give brief proofs of some proposi-
tions which we cited in previous sections.

Proposition 2.2 [[Le1], §2 paragraphs after Lemme 2.7] Let Σ and Σ′ ⊂
∂χ<0M be two compact, connected, incompressible surfaces which are dis-
joint or equal and do not contain any essential closed curve which can be
homotoped into ∂χ=0M . Let Σ̃ ⊂ ∂M̃ (resp. Σ̃′) be a connected component
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of the preimage of Σ (resp. Σ′) and let Γ ⊂ ρ(π1(M)) (resp. Γ′) be the

stabiliser of Σ̃ (resp. Γ′).

Then Σ̃ ∩ Σ̃
′

is either empty or equal to the limit set of Γ ∩ Γ′.
In the latter case, if Γ∩ Γ′ is not cyclic, then it is the fundamental group

of a (possibly twisted) I-bundle which is a connected component of a charac-
teristic submanifold of (M,Σ∪Σ′). If Γ∩Γ′ is cyclic, then it is a finite index
subgroup of a solid torus which is a connected component of a characteristic
submanifold of (M,Σ ∪ Σ′).

Proof. Suppose that ξ belongs to the limit set of Γ∩Γ′. Since we are consid-
ering only geometrically finite groups, both Γ and Γ′ are convex cocompact.
Let l be a geodesic ray from the origin O ∈ H3 to ξ. Let F be a fundamental
domain of the convex core of Γ containing O, and F ′ a fundamental domain
of the convex core of Γ′ containing O. Since Γ and Γ′ are convex cocompact,
the diameters of F and F ′ are bounded. Choose gn ∈ Γ, g′n ∈ Γ′ such that
gnF ∩ l 6= ∅, g′nF

′ ∩ l 6= ∅ and gnF ∩ g′nF
′( 6= ∅) −→ ξ. Since the diameters

of F and F ′ are bounded, we have

d(gnO, g
′
nO) = d(O, g−1

n g′nO) ≤ K

for all n and a fixed K. By discreteness of ρ(π1(M)), after passing to a
subsequence, g−1

n g′n = g for all n. Then g−1
n g′n = g−1

m g′m, i.e., gmg
−1
n =

g′mg
′−1
n ∈ Γ ∩ Γ′. Since Γ and Γ′ are convex cocompact, these elements

are hyperbolic and the limit set of Γ ∩ Γ′ contains at least two points. Let
h ∈ Γ ∩ Γ′ be a hyperbolic element. Then the invariant geodesics c̃, c̃′ of h
in Σ̃, Σ̃′ descend to closed geodesics c and c′ in Σ and Σ′. Hence c and c′

bound an annulus A (not necessarily embedded) which is not homotoped
into ∂M . Hence A must be contained in some characteristic submanifold of
(M,Σ ∪ Σ′). If Σ = Σ′, then c = c′ and A is a Möbius band.

Let F = Σ̃ ∩ Σ̃
′

and C,C ′ be the projections of the convex hulls of F in
Σ̃ and Σ̃′. Then π1(C) = Γ ∩ Γ′ and C ∪ C ′ is the boundary of an I-bundle
C × I which is essential in (M,Σ ∪ Σ′). If Σ = Σ′, then it is a twisted
I-bundle with the boundary C. �

Next we include some proofs from [KlS] for the reader’s convenience.

Proposition 8.1. Suppose that the action of π1(M) on an R-tree T is
minimal and small. Let S ⊂ ∂M be a compact compressible surface which
has (possibly empty) geodesic boundary with respect to a hyperbolic metric on
∂M . Suppose that φ : Tµ→T is a π1(M)-equivariant morphism which folds
only at complementary regions. If µ ⊂ S is in tight position with respect to
a meridian m ⊂ S, then |µ| can be extended to a geodesic lamination which
contains a homoclinic leaf h in S.

Proof. Fix a hyperbolic metric on ∂M . The universal cover S̃ ⊂ H2 is a
convex subset of H2. Let m̄ represent an element of π1(S) corresponding to

the meridian m, which leaves invariant a lift m̃ ⊂ S̃. By equivariance, for
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x ∈ m̃,

φ(π(m̄x)) = φ(π(x))

since m̄ is trivial in π1(M), where π : S̃→Tµ is an equivariant map. Since φ

folds [π(x), π(m̄x)] only finitely many times, one can find segments Ĩ1, Ĩ2 ⊂
m̃ such that Ĩ1 ∩ Ĩ2 = y ∈ m̃ and φ folds π(Ĩ1) and π(Ĩ2) along π(y). For
x ∈ m∩µ, let µ+x denote a half leaf of µ starting from x to a chosen positive
direction. Then using Skora’s idea, Kleineidam and Souto showed [KlS]
(Proposition 3) that there are zi ∈ Ii ∩ µ such that the lifts of µ+z1 and µ+z2
to ∂M̃ have the same endpoints. Let C be the complementary region of
µ̃ in S̃, which contains the folding point y. Let µ̃1, µ̃2 be boundary leaves
of C. Up to reversing the orientation, we can assume that µ̃+1 , µ̃

+
2 are not

asymptotic in S̃. Since the lifts of µ+z1 and µ+z2 to ∂M̃ have the same end

points, by shrinking the intervals, we can see that the projection of µ̃+1 , µ̃
+
2

to ∂M̃ have the same endpoint. Let l be the geodesic in S̃ joining the end
points of µ̃+1 , µ̃

+
2 . The projection of l to S becomes a homoclinic leaf disjoint

from µ. �

Proposition 8.2. Let S be a compressible surface in ∂M , which contains
a homoclinic leaf h. Then there is a sequence of meridians whose Hausdorff
limit does not cross h.

Proof. Since a homoclinic leaf cannot be contained in an incompressible
surface by Lemma 2.1, S(h̄) must contain a meridian m.

If h contains infinitely many homotopy classes ofm-waves. Then there are
(xi), (yi) ⊂ R such that h(xi), h(yi) ∈ m and h[xi, yi] are non-homotopic m-
waves. Since m is compact, after passing to a subsequence, we may assume
that h(xi) and h(yi) converge. Hence for any ǫ > 0, we can choose i, j such
that the lengths of segments [h(xi), h(xj)], [h(yi), h(yj)] ⊂ m are less than ǫ.
Then h[xi, yi] ∪ h[xj , yj ] ∪ [h(xi), h(xj)] ∪ [h(yi), h(yj)] is a meridian whose
geodesic representative lies nearby the homoclinic leaf.

If h contains only finitely many homotopy classes of m-waves. then there
is a meridian m and two disjoint half-leaves h+ and h− of h such that h+

and h− are in tight position with respect tom. Considering the intersections
of m and h+ and h− respectively, one obtains a picture similar to Figure 8,
namely there is an arc k ⊂ h+ and an arc k′ ⊂ h− which nearly bounds an
annulus and a wave between k and k′. These arcs can be used to construct
a sequence of meridians whose Hausdorff limit does not cross h as explained
in the proof of [KlS, Proposition 1]. �

With more work, one could probably prove that h̄ is a Hausdorff limit of
meridians. On the other hand, in all the situations we have used Proposition
8.2, with only little changes, we could have replaced it with the following
weaker result whose proof is easier.
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Lemma 8.3. Let S be a compressible surface which contains a homoclinic
leaf h, and let β be a measured lamination which does not cross h. Then
there is a sequence of meridians whose Hausdorff limit does not cross β.

Proof. Using cut-and-paste operation as in Claim 2.3, we construct a se-
quence of meridians mi such that i(mi, β) −→ 0. Start with a merid-
ian m ⊂ S(h̄). Since h is homoclinic, it contains an m-wave. Using
this wave as in the proof of Claim 2.3, we get a meridian m1 such that
i(m1, β) ≤

1
2 i(m,β). Then we do the same again on m1. Repeating this, we

get a sequence of meridians mi such that i(mi, β) ≤
1
2i
i(m,β). �
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