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Abstract. In this paper, we give a complete criterion for a discrete
faithful representation ρ : Fn→PSL(2,C) to be primitive stable. This
will answer Minsky’s conjectures about geometric conditions onH

3/ρ(Fn)
regarding the primitive stability of ρ.

1. Introduction

Let F be a non-abelian free group of rank n. For any group G, the auto-
morphism group Aut(F ) acts on Hom(F,G) = Gn by precomposition. This
action projects down to the action of the outer automorphism group Out(F )
on the character variety X(F,G) which is defined as the geometric quotient
of Hom(F,G) by inner automorphisms of G. When G is PSL(2,C), Minsky
studied a dynamical decomposition of X(F,G) with respect to the Out(F )-
action. Here a dynamical decomposition means decomposing X(F,G) in
terms of proper discontinuity and ergodicity of the action. See [19] for more
information about this decomposition. Minsky defined the set PS(F ) of
primitive stable characters, and his main results are as follows ([24]).

(1) PS(F ) is an open subset of X(F,PSL(2,C)), and Out(F ) acts on
PS(F ) properly discontinuously.

(2) PS(F ) is strictly larger than the set of Schottky characters.
(3) For every proper free factor A of F and a primitive stable represen-

tation ρ, the restriction ρ|A is Schottky.

Since the set of Schottky characters is known to be the interior of the set
of discrete faithful characters by Sullivan [37], it follows that the dynamical
decomposition of X(F,G) is different from the well-known geometric de-
composition of X(F,G) in terms of being discrete faithful and having dense
image.
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When a primitive stable representation ρ is discrete and faithful, H3/ρ(F )
becomes a hyperbolic 3-manifold which we call a hyperbolic handlebody and
our main interest is finding a geometric condition on H

3/ρ(F ) under which
ρ becomes primitive stable. In the same paper [24], Minsky conjectured that

(1) Every discrete faithful representation of F without parabolics is
primitive stable.

(2) A discrete faithful representation of F is primitive stable if and only
if every component of its ending lamination is blocking.

We shall see that a disc-busting minimal lamination is blocking. For defini-
tions, see section 2. In this paper, we shall prove the first conjecture and
also give an answer to the second one.

Theorem 1.1. If ρ is a discrete faithful representation of F without parabol-
ics then ρ is primitive stable.

In this case, the ending lamination of H3/ρ(F ) is necessarily connected
and in the Masur domain.

Theorem 1.2. Let ρ be a discrete, faithful and geometrically infinite rep-
resentation with parabolics such that the non-cuspidal part M0 of M =
H

3/ρ(F ) is the union of the relative compact core H and finitely many end
neighbourhoods Ei facing Si ⊂ ∂H. Then the representation ρ is primitive
stable if and only if every parabolic curve is disc-busting, and every geomet-
rically infinite end Ei has the ending lamination λi which is disc-busting on
∂H.

Theorem 1.1 and the sufficiency part of Theorem 1.2 were announced in
[13]. The idea of proof is following Minsky’s construction of a primitive
stable representation which is not Schottky, and the main new ingredient
comes from the recent result of Mj about Cannon-Thurston maps of free
Kleinian groups (see [32]).

2. Preliminaries

2.1. Primitive stability. Let us recall that F is a non-abelian free group
of rank n. Let ∨S1 be a bouquet of n oriented circles, whose fundamental
group is F with a fixed generating set X = {x1, · · · , xn}. Then its universal

cover ∨̃S1 can be identified with the Cayley graph ΓF of F with respect
to X, which is a tree with the canonical word metric. Following [4], the

space of oriented lines B̃(F ) in ΓF can be identified with (∂∞F × ∂∞F )\△
where ∂∞F denotes the Gromov boundary of the tree ΓF and △ denotes

the diagonal. The free group F acts diagonally on B̃(F ) as the covering

transformations. We denote the quotient space of B̃(F ) under this action
by B(F ), and call each element of B(F ) also a line.

For w ∈ F , if we let w be the bi-infinite periodic word determined by
concatenating infinitely many copies of w, then it defines an F -invariant

family of lines in B̃(F ) and these lines are projected to a line in B(F ) which
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can be identified with w modulo shift or the conjugacy class [w]. An element
of F is called primitive if it can be a member of a free generating set and
we let P(F ) denote the subset of B(F ) consisting of w for conjugacy classes
[w] of primitive elements, which is Out(F )-invariant.

Given a representation ρ : F → PSL(2,C) and a base point o ∈ H
3,

there is a unique ρ-equivariant map τρ,o : ΓF→H
3 sending the origin e of

ΓF to o and taking each edge to a geodesic segment [12]. A representation
ρ : F → PSL(2,C) is primitive stable if there are constants K, δ such that

τρ,o takes all lines (in B̃(F )) corresponding to P(F ) to (K, δ)-quasi-geodesics
in H

3. This definition is independent of the choice of the base point o ∈
H

3, which we can easily see by changing δ. Since the primitive stability
is also invariant under conjugacy, for simplifying arguments for checking

primitive stability, we shall define a unique element of B̃(F ) corresponding
to a cyclically reduced w ∈ F as follows. Since ΓF is a tree, there exists a
unique oriented line w̃ on ΓF passing through all the wk(e) for k ∈ Z, where
we regard w as a covering transformation. Then clearly, the broken geodesic
image τρ,o(w̃) passes through the base point o.

2.2. Whitehead lemma. We refer to [6, 38] for the basic theory of geo-
desic and measured laminations. The space of measured laminations on a
hyperbolic surface is a completion of weighted simple geodesics, to which the
geometric intersection number continuously extends. Recall that the Masur
domain [20] of a handlebody H consists of projective classes of measured
laminations which have positive intersection number with every non-empty
limit of weighted meridians of H. A measured lamination λ (or a simple
closed curve) is said to be disc-busting if there exists η > 0 such that for any
essential disc A, i(∂A, λ) > η. Otherwise λ is called disc-dodging.

Let ∆ = {δ1, · · · , δn} be a system of compressing discs on a handlebody
H along which one can cut H into a 3-ball. We call such a system a cut
system. A free generating set X of π1(H) = F is dual to such a system.
The Whitehead graph Wh(λ,∆) (of λ with respect to ∆) is defined as fol-
lows. First, we isotope ∆ so that its boundary consists of closed geodesics
with respect to a fixed hyperbolic metric on ∂H(This removes all inessential
intersections between λ and ∂∆). By cutting ∂H along ∆, we get a planar
surface with 2n boundary components. We label the two discs coming from
cutting H along δi as δ+i , δ

−

i so that the oriented loop corresponding to a

generator of π1(H) passes from δ−i to δ+i . Then ∂δ+i and ∂δ−i are identified
on ∂H. The vertices of the graph Wh(λ,∆) are the boundary components
of ∆, and two vertices are connected by an edge if and only if the corre-
sponding boundary components are joined by an arc of λ \ ∆. Note that
we can regard the edges of Wh(λ,∆) as embedded in ∂H \∆, and we can
replace the vertices with small circles ∂δ±i .

Given a meridian or a system of meridians m on ∂H, an m-wave is an arc
α ⊂ ∂H such that α ∩ m = ∂α and that there is an arc β ⊂ m such that
α is homotopic to β in H but not on ∂H. A geodesic lamination λ is said
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to be in tight position with respect to a cut system ∆ (or in more general,
to a disjoint union of compressing discs) if any ∂∆-wave intersects λ. Otal
showed the following in Proposition 3.10 of his thesis [35].

Lemma 2.1. Suppose that a geodesic lamination λ is in a tight position
with respect to a cut system ∆. Then Wh(λ,∆) is connected and has no cut
points.

For disc-busting measured laminations, we can show the following.

Lemma 2.2. Let λ be a disc-busting measured lamination. Then there is a
cut system ∆ with respect to which λ is in tight position, and hence Wh(λ,∆)
is connected and has no cut points.

Proof. Let ∆ be any cut system of H. Suppose that λ is not in tight position
with respect to ∆. Then there are arcs α disjoint from λ with interior disjoint
from ∆ and β on a component D of ∆ with ∂α = ∂β such that α and β are
homotopic in H fixing the endpoints but are not on ∂H. Let γ be α ∪ β.
Since α is homotopic to β in H fixing the endpoints, γ bounds a compressing
discD′. Since λ was assumed to be disc-busting, i(λ, ∂D′) > η. On the other
hand, (∂D \ β) ∪ α is also a meridian, and bounds a compressing disc D′′.
Since β is disjoint from λ, by replacing D with D′′, the intersection number
with λ is reduced by more than η. We now define a new cut system ∆′ to
be (∆\{D})∪{D′′}. As was observed above we have i(λ,∆′) < i(λ,∆)−η.
Since i(λ,∆) is finite and any meridian has intersection number more than
η with λ, this process must terminate in finite steps, and we reach a cut
system with respect to which λ is in tight position. �

Originally in [39, 40], Whitehead considered Wh(A,X) for some finite set
A ⊂ F and a generating set X to check the separability of A. Here, A is
said to be separable if there exists a free decomposition F = F1 ∗ F2 such
that for every element a ∈ A, it is conjugate into one of Fi. The vertices
of Wh(A,X) are {x±|x ∈ X} and for any a ∈ A, two vertices x and y
are connected by an edge if and only if xy−1 appears in a or in a cyclic
permutation of a. If g is primitive, then it is separable. Note that for a
primitive word g ∈ π1(H), the homotopy class g can be realised as a simple
closed geodesic λ(g) on ∂H and then Wh(λ(g),∆) = Wh(g,X(∆)) when we
choose ∆ so that λ(g) does not contain any ∆-wave. Here X(∆) is the dual
generating system of F corresponding to ∆. Thus our previous definition
for Wh(λ,∆) accords with this original definition.

Due to the following lemma [39, 40], for a primitive element g, Wh(g,X)
is either disconnected or has a cut point for any generating set X.

Lemma 2.3. (Whitehead) Let g be a cyclically reduced word in a free group
F , and let X be a fixed generating set. If Wh(g,X) is connected and has no
cut point, then g is not separable, hence in particular g is not primitive.

A word g is called blocking if there exists n such that gn is not a subword of
a cyclically reduced primitive word. Likewise, a lamination λ on ∂H is called
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blocking with respect to a generating system if λ is in tight position with
respect to the cut system dual to the generating system, and there exists
some k such that every length k subword of the infinite word determined by
a leaf of λ does not appear as a subword in a cyclically reduced primitive
word. Recall that a primitive word is a member of a generating system of
F .

Corollary 2.4. A disc-busting minimal lamination λ on the boundary of a
handlebody is blocking with respect to some generating set.

Proof. Consider a generating system dual to a cut system given in Lemma
2.2. Suppose λ is not blocking. Then for all k, there is a subword of length
k of the infinite word determined by λ which is a subword of a cyclically
reduced primitive word. Taking a sufficiently large k, the Whitehead graph
of the length k subword is equal to Wh(λ,∆). Lemmata 2.1 and 2.3 give us
a contradiction. �

When we consider Cannon-Thurston maps, we shall need to deal with
both geodesics on ∂H and those in the Cayley graph ΓF . For that, we shall
reinterpret the lemmata above for geodesics in the Cayley graph.

Let H̃ be the universal cover of the handlebody H. For any fixed Rie-

mannian metric on H, its pull back to H̃ makes H̃ quasi-isometric to the

Cayley graph ΓF (for any generator system). Therefore in particular H̃ is
Gromov hyperbolic, and it can be compactified by adding the boundary at
infinity ∂∞F of F .

Let ∆ be a cut system for H. Then the preimage ∆̃ of ∆ in H̃ cuts H̃

into balls, and each of its components separates H̃ into two. A point in
∂∞F corresponds to a sequence of distinct components (discs) {D1, D2, . . . }

in ∆̃ such that all of Di+1, Di+2, . . . lie on the same side of Di. For two such
sequences of discs {Di} and {D′

i}, they represent the same point at infinity
if and only if for each Di there is j0 such that all the discs D′

j0
, D′

j0+1, . . .

lie on the same side of Di as Di+1, and conversely for each D′
j there is i0

such that all the discs Di0 , Di0+1, . . . lie on the same side of D′
j as D′

j+1.

Let us say two discs D and D′ in ∆̃ are adjacent if they lie on the boundary

of the same ball obtained by cutting H̃ along ∆̃. For any point at infinity
p ∈ ∂∞F , we can choose a sequence {Di} as above representing p such that
Di and Di+1 are adjacent for every i. We call such a sequence maximal. For
two maximal sequences {Di} and {D′

j}, they represent the same point at
infinity if and only if they are eventually the same, i.e. , there are i0 and j0
such that Di0+k = D′

j0+k for every k ∈ N.
Let ΓF be a Cayley graph of F with respect to the generator system dual

to ∆. Since ∨S1 is a spine of H and we identified ∨̃S1 with ΓF , we can

regard the Cayley graph ΓF as being embedded in the interior of H̃. Then

there is a quasi-isometric deformation retraction r : H̃ → ΓF which projects

each disc of ∆̃ to a point. Now, for any geodesic l in ΓF which can be either
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a segment, a ray or a line, we can define the Whitehead graph Wh(l,∆) in
the same way as for laminations on ∂H as follows.

We consider the discs in ∆̃ which l intersects and array them in the order
in which l intersects them, to get a sequence {Di}. This sequence is maximal

in the sense defined above. Note that each disc Di in ∆̃ projects to a disc δi
in ∆. We construct a Whitehead graph Wh(l,∆) by letting the vertices be
as before and connecting two vertices corresponding to δi and δi+1 for each
i, with signs in accordance with the way l connects Di and Di+1.

Lemma 2.5. Let λ be a minimal lamination on ∂H which is in tight position

with respect to ∆. Let l be a lift of a leaf of λ to H̃, and let l∗ be a geodesic

in ΓF which has the same endpoints at infinity as r(l) where r : H̃ → ΓF

is the quasi-isometric deformation retraction. Then we have Wh(l∗,∆) =
Wh(λ,∆).

Proof. Since λ is minimal, every leaf is dense in λ. Thus, if an arc in λ \∆
connects two discs in some homotopy class of arcs (fixing the endpoints),

then so does the projection of l to S. Therefore l passes through discs of ∆̃ in
such a way that every pair of successive intersections corresponds to an edge
of Wh(λ,∆) and every edge in Wh(λ,∆) is realised by a pair of successive
intersections. Therefore, we have only to show that l∗ and l intersect the

same discs in ∆̃ in the same order. Since l∗ is a geodesic in the tree, and l
and l∗ have the same endpoints at infinity, l must intersect all the discs in

∆̃ that l∗ intersects. On the other hand l can have an intersection with a
disc D in ∆̃ which is disjoint from l∗ only when it intersects D twice in the
opposite directions. This implies that l contains a wave and thus l is not
in tight position with respect to ∆, contradicting our assumption. Thus we
have completed the proof. �

We say that a geodesic ray or a line k in ΓF is asymptotic to a geodesic

lamination λ if there is a lift l̃ of a leaf of λ to H̃ which shares at least one
of the endpoints at infinity with k.

Lemma 2.6. Suppose that a geodesic k in ΓF is asymptotic to a minimal
geodesic lamination λ which is in tight position with respect to ∆. Then we
have Wh(k,∆) ⊃ Wh(λ,∆).

Proof. Let l be a lift of a leaf of λ which shares an endpoint at infinity with
k, and l∗ the geodesic in ΓF having the same endpoints at infinity as l. By
the proof of the previous lemma, we see that l∗ intersects the same discs

in ∆̃ in the same order as l. Let {Di} be a sequence of discs in ∆̃ arrayed
in the same order as l∗ intersects them. Since k shares an endpoint with l,
hence with l∗, there is i0 such that k intersects {Di0+1, Di0+2, . . . } in this
order. Now, since λ is minimal, each leaf of λ is recurrent. Let l′ be a
sub-leaf of l∗ starting from the intersection of l with Di0 . Then we have
Wh(l′,∆) = Wh(l∗,∆) = Wh(λ,∆). Since k intersects {Di0 , Di0+1, . . . } in
this order, we have Wh(k,∆) ⊃ Wh(l′,∆). This completes the proof. �
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2.3. Hyperbolic 3-manifold. We shall mainly concentrate on hyperbolic
handlebodies which can be represented as M = H

3/ρ(F ) for a discrete faith-
ful representation ρ. If M is geometrically finite without parabolics, then ρ
is just a Schottky representation by Maskit [21] and if M is geometrically
infinite without parabolics, then its compact core is a compact handlebody
H and the end M\int(H) is homeomorphic to ∂H× [0,∞) by the Tameness
theorem [1, 5]. In this case, the ending lamination on ∂H is connected, fill-
ing, and contained in the Masur domain of ∂H by Canary [8]. When ρ(F )
has parabolics, they all have to be contained in rank-1 maximal parabolic
groups, and a relative compact core is also homeomorphic to a compact
handlebody H which meets each rank-1 closed cusp neighbourhood along a
single annulus. The complement of these annuli in ∂H consists of several
components Si which may be either compressible or incompressible. Each
end neighbourhood Ei = Si× [0,∞) facing Si may be geometrically finite or
otherwise be geometrically infinite, and in the latter case it has the ending
lamination λi. The union of a relative compact core and the closed cusp
neighbourhoods is called an augmented Scott core and will be denoted by
H ′.

3. Cannon-Thurston map

Starting with the pioneering work of Cannon and Thurston [7] for closed
3-manifolds fibring over a circle, Cannon-Thurston maps have been gener-
alised in several ways by Bowditch [3], Klarreich [14], McMullen [22], Minsky
[23] and Mj [26, 27, 28, 29, 30, 31] (see also [25], [36]). Mj proved the ex-
istence of Cannon-Thurston maps for Kleinian surface groups in [29], and
described the points identified by Cannon-Thurston maps in [30](see [33]
for the case of punctured surfaces). Recently he also proved the existence
of Cannon-Thurston maps for arbitrary Kleinian groups and described the
points identified by the maps in [32]. We shall make use of his result in the
case of free Kleinian groups as a main ingredient for the proof of our main
results.

Given a discrete faithful representation ρ : F → PSL(2,C) without
parabolics, the Cannon-Thurston map is a continuous extension of τρ,o :

ΓF→H
3 to τ̂ρ,o : Γ̂F→H

3 ∪ Ĉ where Ĉ is the ideal boundary of H3 and Γ̂F

is the Gromov compactification of ΓF . The boundary of H̃ is a covering
of S, which we denote by SF . We fix a hyperbolic metric on S and pull it

back to SF . As was explained in §2.2, the Gromov boundary of both H̃ and

Γ̂ is identified with ∂∞F . Mj’s theorem for free Kleinian groups without
parabolics is as follows.

Theorem 3.1. Given a discrete faithful representation ρ : F→PSL(2,C)
without parabolics, let ΓF be the Cayley graph of F and i : ΓF→H

3 the
natural identification of ΓF with its image under τρ,o for a chosen base point

o ∈ H
3. Let λ be the ending lamination of ρ(F ) and λ̃ its preimage in SF .
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Then i extends continuously to a map î : Γ̂F→H∪ Ĉ. If we let ∂i denote the
restriction of i to the Gromov boundary ∂∞F , then ∂i(a) = ∂i(b) if and only

if a, b are either ideal endpoints of a leaf of λ̃, or ideal vertices of one of the

complementary ideal polygons of λ̃, where ∂∞F is regarded as the boundary
at infinity of SF .

Recall that M := H
3/ρ(F ) can be decomposed into M = H ∪E where H

is a genus n compact handlebody and E is homeomorphic to ∂H × [0,∞).
We use the convention that ∂H and ∂H × {0} are identified and denote
∂H as S. When the end E is geometrically infinite, we have an ending
lamination λ on S. By [8], λ is in Masur domain and by [35, Theorem 1.3],
there is a cut system ∆ with respect to which λ is in tight position (the
arguments of the proof of [35, Theorem 1.3] are the arguments we used in
the proof of Lemma 2.2). The lamination is realised as a geodesic lamination
uniquely once we fix a hyperbolic metric on S. As was explained in §2.2,
each leaf of λ can be lifted to a geodesic l in ∂H̃ (with the pulled-back
hyperbolic metric) and its projection by the retraction r forms a quasi-
geodesic in ΓF . We denote the geodesic on ΓF with the same endpoints at
infinity as r(l) by l∗ as before. Then Wh(l∗,∆) = Wh(λ,∆) by Lemma 2.5.
By Lemma 2.6, for any geodesic in ΓF sharing an endpoint with l∗, we have
Wh(k,∆) ⊃ Wh(λ,∆). If we connect two endpoints a, b in ∂∞F such that
∂i(a) = ∂i(b), then by Theorem 3.1, the geodesic on ΓF connecting a with

b is asymptotic to a leaf of λ̃. Therefore, we get the following corollary.

Corollary 3.2. Given a discrete faithful representation ρ : F→PSL(2,C)
without parabolics, denote by λ its ending lamination. Let ∆ be a cut system
with respect to which λ is in tight position. Given a, b ∈ ∂∞F which are
identified by ∂i, if we let the geodesic on ΓF joining a, b be k, then Wh(k,∆)
contains Wh(λ,∆), is connected and has no cut point.

Now we discuss the case of a free Kleinian group with parabolics. Recall
that when ρ(F ) has parabolics, M = H

3/ρ(F ) has a relative compact core
H of the non-cuspidal part M0 which intersects each cusp neighbourhood
along an annulus whose core curve we call a parabolic curve. Each frontier
component Si of H in M0 faces an end neighbourhood Ei. If Ei is geo-
metrically infinite, it has an ending lamination λi which is a filling minimal
lamination on Si. Now we consider the union Λ of all the ending laminations
λi and all the parabolic curves. Then Λ itself is a geodesic lamination on
S. Suppose, as in the setting of Theorem 1.2, that all the parabolic curves
and the λi are disc-busting. Then Λ is also disc-busting. By Lemma 2.1,
we can find a cut system ∆ with respect to which Λ is in tight position.

We lift Λ to a geodesic lamination Λ̃ on SF . Since Λ is in tight position
with respect to ∆, each λi has no ∂∆-waves although λi may not be in tight

position with respect to ∆. Thus no leaf of Λ̃ can intersect a component of

the preimage of ∆ twice and each leaf of Λ̃ connects two distinct points at
infinity on ∂∞F .
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We define an equivalence relation R̃ on ∂∞F by letting aR̃b if and only if
one of the following holds :

(1) a and b are the endpoints of a leaf of Λ̃;

(2) there is a complementary region of Λ̃ with trivial or cyclic stabiliser
whose closure contains both a and b;

(3) there are two complementary regions U,U ′ of Λ̃ whose closures share
a lift of a parabolic curve, such that a is contained in the closure of
U and b is contained in the closure of U ′.

Here, the stabiliser refers to that with respect to the action of F on SF .

A complementary region of Λ̃ which is a lift of a complimentary region of
Λ bounded only by parabolic curves may have non-cyclic stabiliser. Such a
region corresponds to a geometrically finite end of M0

It is easy to check that this relation R̃ is the transitive closure of another
relation R which is defined by letting aRb if and only if a and b are either the

endpoints of a leaf of Λ̃ or two vertices of the same complementary region

of Λ̃ with trivial or cyclic stabiliser.
Mj’s Theorem about the identified points of a Cannon-Thurston map can

be adapted to our case as follows. Recall that H ′ is an augmented Scott
core of M .

Theorem 3.3. Let ρ : F→PSL(2,C) be a discrete faithful representation.
Then the natural identification i of ΓF with its image under τρ,o extends

continuously to a map î : ΓF ∪∂∞F → H
3∪ Ĉ. Furthermore for a, b ∈ ∂∞F ,

∂i(a) = ∂i(b) if and only if aR̃b.

Assume that ∂i(a) = ∂i(b) for a, b ∈ ∂∞F . Let k be a geodesic connecting

a and b on ΓF . Then k is asymptotic to some leaf l of Λ̃ by our definition
of R. Let λ be a component of Λ containing the projection of l and take
∆′ to be the disc system such that Wh(λ,∆′) is connected and has no cut
point coming from Lemma 2.1. Since two Cayley graphs coming from two
disc systems ∆′ and ∆ are quasi-isometric, if we let k′ be the geodesic in the
Cayley graph with respect to ∆′ connecting a and b, then k′ is asymptotic
to l. By the same argument as in the case without parabolics, Corollary 3.2
holds also in this case.

Corollary 3.4. Given a discrete faithful representation ρ : F→PSL(2,C),
denote by Λ the union of its ending laminations and parabolics. Suppose
that all the components of Λ are disc-busting. Given a, b ∈ ∂∞F which
are identified by ∂i, if we let the geodesic on ΓF joining a, b be k, then
Wh(k,∆) contains Wh(λ,∆) for some component λ of Λ and a cut system
∆ with respect to which λ is in tight position. Then Wh(k,∆) is connected
and has no cut point for the disc system ∆.
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4. Primitive stable representations of a free group

4.1. Free groups without parabolics. In this section, we shall prove
the first of our theorems. The overall argument is as follows. Assuming
that the representation is not primitive stable, there exists a sequence of
primitive elements {wn} such that {τρ,o(w̃n)} is not a family of uniform
quasi-geodesics, where w̃n is a line in ΓF corresponding to wn. After passing
to a subsequence, w̃n converges uniformly on every compact set to a bi-
infinite line w̃∞ in the Cayley graph with two distinct end points in the
Gromov boundary. Then we shall show that the endpoints of τρ,o(w̃∞) are

the same point in ∂H3 = Ĉ. Applying Mj’s result cited as Theorem 3.1
above, we shall conclude that the endpoints of w̃∞ are either the endpoints
of a lift of a leaf of the ending lamination of M = H

3/ρ(F ) or ideal end-
points of a complementary polygon. Finally we shall apply Lemma 2.3 to
draw a contradiction.

Proof of Theorem 1.1. Suppose that ρ is not primitive stable. Then there
exists a sequence {wn} of cyclically reduced primitive words such that the
τρ,o(w̃n) are not uniform quasi-geodesics for every lift w̃n of wn to ΓF . Recall
that M = H

3/ρ(F ) is homeomorphic to H ∪ (∂H × [0,∞)) where ∂H is
identified with ∂H × {0}.

Let γwn
be the geodesic in H

3 joining the endpoints at infinity of τρ,o(w̃n).
Note that γwn

is the axis of the loxodromic isometry ρ(wn). By the following
Lemma 4.1 which was observed by Minsky in [24, Lemma 3.2], it is not
possible that all γwn

are contained in a uniformly bounded neighbourhood
of τρ,o(ΓF ).

Lemma 4.1. A discrete faithful representation ρ : F → PSL(2,C) is prim-
itive stable if and only if there is uniform neighbourhood of τρ,o(ΓF ) ⊂ M =
H

3/ρ(F ) containing all the closed geodesics representing primitive elements.

Proof. If ρ is primitive stable, there are K, ǫ such that for any primitive word
w, the line τρ,o(w̃) is a (K, ǫ)-quasi-geodesic. This implies that there is a
uniform L such that the line τρ,o(w̃) and the geodesic line connecting its ideal
endpoints are within Hausdorff distance L. By projecting them down to M ,
we see that any primitive closed geodesic stays in the L-neighbourhood of
the projection of τρ,o(ΓF ).

To prove the converse, we can assume the projection to M of the uniform
neighbourhood of τρ,o(ΓF ) to be a core handlebody of M , and regard it as

H. Let r : H→∨ S1 be the obvious retraction and let r̃ : H̃→ΓF be its lift.
Then r and r̃ are (K, δ) quasi-isometries for some constants K, δ depending
only on H and r. Thus we get a (K, δ) quasi-geodesic r̃(γw). Note that
r̃(γw) = τρ,o(w̃) because their projections to M are freely homotopic in
H. �

Hence, there exists a sequence of positive numbers {ǫn} such that γwn

is not contained in the ǫn-neighbourhood of the core graph τρ,o(ΓF ) where
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ǫn → ∞. Since γwn
is not contained in the ǫn-neighbourhood of τρ,o(ΓF ),

neither is it in the ǫn-neighbourhood of τρ,o(w̃n). Thus, we can choose
pn ∈ γwn

which is not contained in the ǫn-neighbourhood of τρ,o(w̃n). Then
the geodesic plane orthogonal to γwn

at pn has to intersect τρ,o(w̃n) on at
least one point, say qn, so that we get dH3(qn, γwn

) > ǫn. If qn lies in a
geodesic segment s of τρ,o(w̃n), then one of the two endpoints of s, which
we denote by v, has distance from γwn

larger than ǫn because the minimal
distance function dH3(q, γwn

) where q moves in s is convex (see [2, pp. 178],
for instance). Moreover, we can shift the words wn so that the specified
vertex v becomes the base point o as follows.

The vertex v on τρ,o(w̃n) is expressed as ρ(wi
nvn)o where wn = g1g2 . . . gk

and vn = g1 . . . gl for l < k and i ∈ Z. Assume that dH3(ρ(wi
nvn)o, γwn

) > ǫn.
Then, since γwn

is the axis of the loxodromic isometry ρ(wn), we get

dH3(ρ(wi
nvn)o, γwn

) = dH3(ρ(vn)o, γwn
) = dH3(o, ρ(vn)

−1γwn
),

and
ρ(vn)

−1γwn
= γv−1

n wnvn
.

Since v−1
n wnvn is a shifted word of wn, it is also cyclically reduced and

primitive. We also have

dH3(o, γv−1
n wnvn

) > ǫn.

Therefore, γv−1
n wnvn

has to leave every compact subset in H
3 as n → ∞, and

{v−1
n wnvn} is a desired sequence.
Now, we have obtained a new sequence {w′

n} such that dH3(o, γw′

n
) goes

to ∞ as n → ∞, which means that the spherical distance between the
endpoints of γw′

n
goes to 0, so that the two endpoints of τρ,o(w̃

′
n) in ∂H3

converge to the same point as n → ∞.

Lemma 4.2. In ΓF , after passing to a subsequence, {w̃′
n} converges uni-

formly on every compact set to a bi-infinite geodesic w̃∞ with distinct end
points and such that for some cut system ∆, we have Wh(w̃∞,∆) ⊃ Wh(λ,∆),
where λ is the ending lamination of ρ(F ).

Proof. Since F has a set of finite number of generators X, after passing to
a subsequence, we may assume that all w′

n have xi and xj in {x±|x ∈ X} as
their first and last letter respectively for fixed i, j. Note that xj cannot be

x−1
i because w′

n is cyclically reduced. Then the geodesic w̃′
n has endpoints

at infinity in the regions determined by xi and x−1
j . Hence, passing to a

subsequence, w̃′
n has a limit geodesic w̃∞ with distinct endpoints a, b at

infinity in the regions determined by xi and x−1
j . Since the endpoints of

τρ,o(w̃
′
n) in ∂H3 converge to the same point, a and b are identified under the

Cannon-Thurston map.
�

Now returning to the main proof, Wh(λ,∆) is connected and has no cut
point with respect to ∆ by Lemma 3.2 and from Wh(w∞,∆) ⊃ Wh(λ,∆),
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we can see that the same is true for Wh(w′
n,∆) for large n. On the other

hand for any primitive word w′
n, this is not possible by Corollary 2.3. �

4.2. Free groups with parabolics. Recall that when ρ : F→PSL(2,C)
has parabolics, M = H

3/ρ(F ) = H ′ ∪ ∪Ei where H ′ is the augmented scott
core and Ei is an end neighbourhood facing the relative compact core H
along Si ⊂ ∂H. The Si are glued to each other by parabolic loci Ai whose
core curves are denoted by ci. When Ei is geometrically infinite, it has
ending lamination λi which is disc-busting by assumption.

Before we start the proof of our second theorem, we remark that in the
case when ρ has parabolics, the manifold may not be primitive stable even if
every proper free factor is Schottky. The following example due to Minsky
shows this. Let M be a handlebody of even genus. Then M is homeomor-
phic to Σ × I where Σ is a genus g surface with one boundary component.
Consider a discrete faithful representation ρ : π1(M) = F2g → PSL(2,C)
such that the boundary curve of Σ corresponds to a parabolic element and
at least one end is degenerate. Then we can see that ρ is not primitive stable
using the following argument which is also due to Minsky.

First, we can see that the covering of M corresponding to a free factor
of F2g is convex cocompact by using Canary’s covering theorem [9]. This
shows that if we restrict ρ to a proper free factor, then the representation
is Schottky. Noting that every non-peripheral non-separating simple closed
curve on Σ is primitive, suppose that {pi} is a sequence of such primitive
simple closed curves converging to the ending lamination of M , whose geo-
desic representatives exit the end. If we suppose ρ is primitive stable, then
a line passing through the identity element determined by the conjugacy
class of pi in the Cayley graph is mapped to a uniform (K, d)-geodesic in H

3

passing through a fixed point o since the pi are primitive. Then the geodesic
lines homotopic to its image by τρ,o cannot be far from o, hence their images
in M are near the projection of o. This contradicts the fact that they exit
the end.

We note that in this example the ending lamination, which we denote
by λ, is not disc-busting. In fact, λ is contained in the Hausdorff limit of
meridians of the form of ai × {0} ∪ ∂ai × I ∪ ai × {1}, where the ai are
essential arcs on Σ whose Hausdorff limit contains λ.

Proof of Theorem 1.2 (sufficiency). If there is no ending lamination λi, then
by the same argument as the proof of Theorem 4.1 in Minsky [24], we see
that ρ is primitive stable.

If there is at least one ending lamination, then we consider Λ which is the
union of the ending laminations and parabolic curves, and get the equiva-

lence relation R̃ from Λ̃ as we explained just before stating Theorem 3.3.
Repeating the same argument as in the case without parabolics replacing
Corollary 3.2 with Corollary 3.4, we complete the proof. �
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By Minsky’s result that the restriction of a primitive stable representation
to a proper free factor of the free group is Schottky, we immediately get the
following corollary.

Corollary 4.3. Let M = H
3/ρ(F ) as in Theorem 1.1 or 1.2. If Fn = A∗B

into two nontrivial free factors, then the covering manifold corresponding to
A or B is convex cocompact, i.e., Schottky.

Note that the the above corollary can be also obtained by Canary’s cov-
ering theorem ([9]) directly.

5. Necessary condition

In this section, we shall prove the necessity part of Theorem 1.2. Actually
we shall prove the contrapositive, namely we assume that some parabolic or
ending lamination is disc-dodging and show that the representation is not
primitive stable. The case that ρ has a parabolic curve is dealt with by the
next Lemma 5.1.

Lemma 5.1. If there is a parabolic curve on ∂H which is disjoint from a
meridian, then ρ is not primitive stable.

Proof. Suppose that c is a parabolic curve which is disjoint from a meridian
m. If m is separating, then it bounds a separating compressing disc D which
gives rise to a free-product decomposition of F = π1(H). One of the free
factors which contains an element corresponding to c is not Schottky. By
Minsky’s result in [24] stated as (3) in our Introduction, this shows that ρ
is not primitive stable.

In the case when m is non-separating, we have a decomposition of F of
the form F = A∗Z such that c represents an element conjugate into A. The
same result of Minsky leads to the same conclusion, i.e. ρ is not primitive
stable. �

To conclude the proof of the necessity part, we need to assume that an
ending lamination λ is disc-dodging and conclude that the representation is
not primitive stable. In order to do that, we shall approximate λ by disc-
dodging curves. The following Lemma 5.2, which is a standard result of
3-manifold topology, will help us construct disc-dodging curves.

Lemma 5.2. For any essential annulus A in H, there is a meridian which
is disjoint from A.

Proof. What we want to show is that there is a compressing disc for H
disjoint from A. Let D be a compressing disc for H. We isotope D so that
there is no inessential intersection between D and A. If D ∩A = ∅, then we
are done. Suppose not. We consider an arc k in D ∩ A which is outermost
in D and cuts off a semi-disc ∆ from D. If k connects the same component
of ∂A, then it cuts off a disc ∆′ from A and ∆ ∪ ∆′ is a compressing disc
which can be isotoped off A. If k connects two components of ∂A, then we
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can boundary-compress A along ∆, and get a compressing disc disjoint from
A. �

As was mentioned before, we shall approximate a disc-dodging minimal
lamination by disc-dodging curves, but before going any further, we need a
few extra definitions.

We fix some hyperbolic structure on ∂H. For a minimal lamination µ
which is not a simple closed curve we denote by S(µ) the unique minimal
compact subsurface of ∂H with geodesic boundaries containing µ. In S(µ)
there is a unique maximal multi-curve that is disjoint from µ, we denote it
by Cµ. We have ∂S(µ) ⊂ Cµ but this inclusion may not be an equality.

Lemma 5.3. Let λ be a disc-dodging minimal lamination which is not a
simple closed curve, then either every component of Cλ is disc-dodging or λ
is contained in a Hausdorff limit of a sequence of disc-dodging simple closed
curves on ∂H as its unique minimal component.

Proof. The idea of the proof is to use a homoclinic leaf (see the definition
below) to construct a sequence of essential annuli whose boundaries approx-
imate λ as in [16, Lemme C.1] (see also the proof of [15, Proposition 1]) and
to use Lemma 5.2. Although we cannot adapt the arguments of [16, Lemme
C.1] to our case, it will turn out that we can modify our settings so that we
can apply some of the results of [16].

Consider a disc-dodging minimal lamination λ endowed with a transverse
measure and a sequence of meridians mi such that i(mi, λ)→0. If all the
components of Cλ are disc-dodging, we are done. Thus, we assume that
there is a disc-busting component c of Cλ. We endow each leaf of Cλ with a
transverse Dirac mass with a weight equal to π and denote by γ a measured
lamination which is the union of the weighted multi-curve thus obtained and
λ.

If an essential annulus A satisfies i(∂A, γ) = 0, we cut H along A and
keep the component which contains λ, and denote it by H1. Notice that
H1 is also a handlebody. Applying the cut-and-paste operation described in
the proof of Lemma 5.2 to A and a disc bounded by mi, we get a meridian
mi,1 ⊂ ∂H which is disjoint from A and satisfies i(λ,mi,1) ≤ 2i(λ,mi).
Since c ⊂ Cλ is disc-busting, mi,1 intersects c. In particular, mi,1 lies on
∂H1, which implies that λ is disc-dodging also in H1. The boundary of H1

contains one or two annuli corresponding to A (depending on whether or
not A separates H). Inside each of these annuli, we put its core curve on
which we give a transverse Dirac mass with weight equal to π, and add it
to γ. Since mi,1 is disjoint from A, it is disjoint from the added components
of γ.

If there is another essential annulus A1 ⊂ H1 satisfying i(∂A1, γ) = 0,
then it can be regarded as an essential annulus in H because we extended
γ so that it contains the core curve of A. If we cut H1 along A1, take the
component H2 containing λ, and extend γ as before, then we get a meridian
mi,2 ⊂ ∂H2 with i(λ,mi,2) ≤ 2i(λ,mi,1).
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We repeat this operation as long as there is an essential annulus not in-
tersecting γ on the obtained handlebody. Since the number of non-parallel
essential annuli in H is finite, after finitely many steps, we get a new han-
dlebody H∞ and a measured geodesic lamination γ such that any essen-
tial annulus A∗ in H∞ satisfies i(∂A∗, γ) > 0. Furthermore there is a se-
quence of meridian mi,∞ ⊂ ∂H∞ such that i(mi,∞, λ) → 0 and i(mi,∞, γ) =
i(mi,∞, γ ∩ S(λ)). By an abuse of notation, we denote mi,∞ again by mi.

To apply [16, Proposition 3.5] to our γ, we verify that γ satisfies its
hypotheses.

Claim 5.4. The measured geodesic lamination γ satisfies :

(a) the weight of any closed leaf of γ is at most π;
(c) i(γ, ∂D) > 2π for any compressing disc D for H∞.

Proof. The condition (a) follows directly from the construction of γ.
By assumption a component c of Cλ is disc-busting. By definition any

simple closed curve that intersects c also intersects λ. Since c carries a
weight equal to π in γ any simple closed curve d that intersects c at least
twice satisfies i(γ, d) > 2π. Thus to prove that γ satisfies the condition (c),
we need to prove that any meridian intersects c at least twice.

Consider a compressing disc D for H∞. Since c is disc busting, ∂D
intersects C at least once. If ∂D intersects c only once, we denote by V
a small regular neighbourhood of c ∪ D, which is a solid torus. Let D′ be
the closure of ∂V \ ∂H∞. Then D′ is a compressing disc for H∞ which does
not intersect c since H∞ itself is not a solid torus. This contradicts the disc-
busting property of c. Thus we have proved that any meridian intersects c
at least twice. �

It follows then from [16, Proposition 3.5] that the following two conditions
are equivalent.

(b1) There exists a positive number η such that i(γ, ∂A) ≥ η for any essential
annulus A in H∞.

(b2) Let l+, l− ⊂ ∂H∞ \γ be two disjoint half geodesics such that some lifts

l̃+ and l̃− of l+ and l− to H̃∞ have the same endpoints. Then l̃+ and

l̃− are asymptotic on ∂H̃∞.

Recall that we have a sequence of meridianmi ⊂ ∂H∞ such that i(mi, λ) →
0 and that i(mi, γ) = i(mi, γ∩S(λ)). Take a subsequence so that {mi} con-
verges in the Hausdorff topology to a geodesic lamination µ on ∂H∞. By
Casson’s criterion (see Casson-Long [11], Otal [35], and [16, Theorem B1]),
µ contains a homoclinic leaf h. A homoclinic leaf is defined as follows. We

fix a Riemmanian metric on H∞ and lift it to H̃∞. A leaf l is said to be
homoclinic if there are sequences of points {xi}, {yi} on a lift l̃ ⊂ H̃∞ of

l such that the distance between xi and yi (in H̃∞) is bounded whereas

their distance on l̃ goes to ∞ as i → ∞. (This is a definition which was
adopted in Kleineidam-Souto [15] and Lecuire [16]. Otal called this “weakly
homoclinic” in [35].)
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We shall use the following property of homoclinic leaves.

Lemma 5.5. Let h be a homoclinic leaf on the boundary of a handlebody H
such that h contains two disjoint half-leaves h± which are in tight position

with respect to a cut system ∆. Then any lift h̃ of h to the universal cover

H̃ of H has only one endpoint at infinity.

Proof. This was already proved as Fait 2.2 in [16]. We shall give a short proof
here for the completeness. Let ΓF be the Cayley graph of F associated to

a generating set dual to ∆. Let r : H̃ → ΓF be the quasi-isometry defined
in §2.2. Since h± are in tight position with respect to ∆, the restriction of

r to h̃± (the lifts of h± lying in h̃) is also a quasi-isometry, and hence each

of h̃+ and h̃− has only one endpoint at infinity.
Now, since h is homoclinic, there are sequences of points {xi} and {yi}

in h̃ such that the distance between xi and yi (in H̃) is bounded whereas

their distance on h̃ goes to ∞ as i → ∞. By the quasi-isometricity which
we have mentioned above, we see that {xi} and {yi} cannot go to the same

end of h̃, and hence we can assume {xi} ⊂ h̃+ and {yi} ⊂ h̃−. This shows

that the endpoints at infinity of h̃+ and h̃− coincide. �

If h intersects λ transversely, then it contains an arc κ with
∫
κ
dλ > 0.

Since h lies in the Hausdorff limit of mi, for i large enough, mi contains an
arc very close to κ. It follows that i(mi, λ) ≥

∫
κ
dλ for large i, where the

righthand is a positive constant independent of i. Since i(mi, λ)→0, this
cannot happen, and hence h does not intersect λ transversely.

Since i(mi, γ) = i(mi, γ ∩ S(λ)), using the same argument, we see that h
is disjoint from the leaves of γ lying outside S(λ). It follows that h contains
two disjoint half-leaves h+ and h− which are disjoint from γ. Using these
half-leaves h+ and h−, we shall show that γ does not satisfy the condition
(b2).

Let h̃ ⊂ H̃∞ be a lift of h and h̃± ⊂ h̃ lifts of h± respectively. Since c is
disc-busting, ∂H∞ \ c is incompressible. A lift of a component of ∂H∞ \ c

to ∂H̃ is an open disc whose closure in ∂H̃∞ ∪ ∂∞F ′ is a closed disc (see
[16, Lemme 2.4]), where F ′ is a subgroup of F corresponding to π1(H∞).

It follows that h̃± has a well-defined endpoint in ∂∞F ′. If we choose h± to
be disjoint from c, since c is disc-busting, there is a cut system with respect
to which h± are in tight position (Lemma 2.2). Since h is homoclinic, by

Lemma 5.5, h̃+ and h̃− have the same endpoint. Furthermore we have the
following.

Claim 5.6. The half-geodesics h̃+ and h̃− are not asymptotic on ∂H̃∞

Proof. Seeking a contradiction, suppose that h̃+ and h̃− are asymptotic on

∂H̃∞. Then there is a sequence of geodesic arcs k̃n ⊂ ∂H̃∞ joining h̃+ to

h̃− such that k̃n ∩ h̃ = ∂k̃n and the length of k̃n goes to 0 (with respect
to the pull-back of some fixed hyperbolic metric on ∂H∞). Let kn be the
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projection of k̃n to ∂H∞. Then we see that
∫
kn

dλ → 0, where dλ denotes the
transverse measure of λ, as follows. Suppose, seeking a contradiction, that
there exists ǫ > 0 such that

∫
kn

dλ > ǫ. Since ∂H∞ is compact, passing to a
subsequence, the arcs kn converge to a point p on ∂H∞, and any transverse
arc passing through p has to have measure greater than ǫ. This contradicts
the fact that λ is minimal and is not a simple closed curve.

The arcs kn can be assumed to be homotopic without their endpoints

passing through λ since h̃+ and h̃− are asymptotic on ∂H̃∞. Hence,
∫
kn

dλ

does not depend on n, and it follows that
∫
kn

dλ = 0 for every n, which

means that kn is disjoint from λ for every n. By shortening h± if necessary,

we may assume that ∂h̃± lies on ∂k̃1. Then d̃ = k̃1∪(h̃\h̃
±) bounds a disc in

H̃∞ which is disjoint from the preimage of λ since H̃∞ is simply connected.
Since k1 can be homotoped to arbitrarily short geodesic arcs keeping its

endpoints on h̃, it cannot be homotopic to h̃ \ h̃±, which means that d̃ is

essential on ∂H̃∞. The projection d of d̃ to ∂H∞ bounds a (possibly not
embedded) disc which is disjoint from λ. It follows then from Dehn’s lemma
that there is a compressing disc for H∞ which is disjoint from λ. Hence
each component of Cλ is disc-dodging. This contradicts the assumption
that c ⊂ Cλ is disc-busting. �

It follows from Claim 5.6 that γ does not satisfy condition (b2) either.
By [16, Proposition 3.5] there is a sequence of essential annuli Ai in H∞

such that i(γ, ∂Ai) → 0. By construction, we have i(γ, ∂A) > 0 for any
essential annulus A (this is the cut-and-paste operation achieved for H∞).
Since each leaf of γ that is not a leaf of λ has a weight equal to π, for i
large enough, ∂Ai intersects λ and i(∂Ai, γ \ λ) = 0. Extract a subsequence
such that ∂Ai converges in the Hausdorff topology to a geodesic lamination
ν. Since i(γ, ∂Ai) → 0, the lamination ν does not intersect γ transversely.
Since ∂Ai intersects λ, the only possibility is that λ is a sublamination of
ν. This implies that ν contains λ as its unique minimal component since
ν is disjoint from Cλ and λ is filling in S(λ) \ Cλ. Since Ai can also be
regarded as an essential annulus in H, by Lemma 5.2, each component of
∂Ai is disc-dodging. Thus we have proved that λ is contained in a Hausdorff
limit of a sequence of disc-dodging simple closed curves on ∂H as its unique
minimal component. �

Now we are ready to prove the necessity part of Theorem 1.2.

Proof of Theorem 1.2 (necessity). Consider a representation ρ that has a
disc-dodging parabolic or ending lamination and let us show that ρ is not
primitive. By Lemma 5.1, we can assume that every parabolic curve is disc-
busting. Suppose that there is a disc-dodging ending lamination λ. Since
all component of Cλ are parabolics, they are disc-busting. By Lemma 5.3,
there is a sequence of disc-dodging simple closed curves ci whose Hausdorff
limit contains λ as its unique minimal component.
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Since ci is disc-dodging, there is a meridian mi disjoint from ci. As we saw
in the proof of Lemma 5.1, there is a free decomposition F = Ai∗Bi such that
ci is conjugate into Ai. We take a primitive closed curve di conjugate into
Bi. We fix some arcs connecting a basepoint to ci and di, and regard them
as elements in π1(H) = F . We can then consider an element of F = π1(H)
represented as dic

ni

i which is also primitive. By choosing a sufficiently large
ni for each i, we can make the closed geodesic e∗i in H

3/ρ(F ) representing
dic

ni

i pass a very thin neighbourhood of the closed geodesic representing ci,
which we denote by c∗i . Since ci converges in the Hausdorff topology to the
union of the ending lamination λ and extra isolated leaves spiralling around
λ, the closed geodesic c∗i exits every compact. This shows that the closed
geodesics e∗i representing primitive classes do not stay in a compact set. This
implies that ρ is not primitive stable by Lemma 4.1. �

We note that Theorem 1.2 also holds when there are no parabolics, and
hence Theorem 1.1 could be viewed as a special case of Theorem 1.2. Indeed
the necessary conditions given in 1.2 are automatically satisfied when there
are no parabolics. The ending lamination is minimal filling and in Masur
domain in this case and such a lamination is disc-busting [35].

6. twisted I-bundle case

Let us consider a special case when the non-cuspidal part M0 is a twisted
I-bundle. We note that if M0 is a twisted I-bundle, it has only one end.
If it is geometrically finite, then Minksy’s result showed that it is primitive
stable. We are interested in the case when the end is geometrically infinite.
We shall see our main theorem implies the primitive stability for twisted
I-bundles over non-orientable surfaces with non-empty boundaries. We first
note the following fact about ending laminations for twisted I-bundles.

Lemma 6.1. Let W be a twisted I-bundle over a non-orientable surface
B, and denote the associated ∂I-bundle contained in ∂W by S. A mini-
mal filling lamination µ on S can be an ending lamination of a hyperbolic
3-manifold whose non-cuspidal parts has a relative compact core which is
homeomorphic to (W,∂W \ IntS) as pared manifolds if and only if µ is not
isotopic to a double-cover of a lamination on B.

Proof. The “if” part was proved in Ohshika [34]. The “only if” part, which
is really relevant to our argument, is also well known. We here give a brief
proof.

Suppose that µ double covers a lamination µ̄ on B, and that M is a
hyperbolic 3-manifold as in the statement. By assumption, M0 has a relative
compact core C homeomorphic to W as pared manifolds. Then µ̄ is a
Hausdorff limit of a sequence of simple closed curves ci on B. We consider
a pleated surface fi : B → M realising ci. Let B0 be a section of the base
surface B inside C with respect to the I-bundle structure. Since the bundle
is twisted, any surface in M homotopic to B0 in M must intersect B0 and
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hence the image of fi also intersects B0 for every i. Therefore fi cannot
tend to an end because the set of such pleated surfaces is precompact (see
[10, I.5.2.18]). This shows that µ̄, hence also µ is realisable. Thus we see
that µ cannot be an ending lamination. �

In addition to this Lemma 6.1, we have the following.

Lemma 6.2. For a twisted I-bundle W as in Lemma 6.1, every filling,
disc-dodging lamination in S is isotopic to a double cover of a lamination
on B.

Proof. Suppose that λ is a filling, disc-dodging lamination in S and fix a
transverse measure on λ. Let Di be a compressing of W with i(∂Di, λ) → 0.
Let µ be a Hausdorff limit of {∂Di} after passing to a subsequence. Then
µ cannot intersect λ transversely. Therefore the Hausdorff limit of ∂Di is a
union of λ and isolated leaves whose ends spiral around λ.

Now, we shall analyse what kind of form Di can have. By the standard
technique of 3-dimensional topology (essentially due to Haken), we see that
if a compressing disc is boundary-incompressible as a surface in (M0, S),
then it is vertical, i.e. the union of fibres over a proper arc in B. In gen-
eral, a compressing disc may be boundary-compressible, but after repeating
boundary-compression finitely many times, it will become a union of finitely
many vertical discs. Therefore any compressing disc is obtained from dis-
joint vertical discs by band-sums.

We next turn to bound the number of bands contained in compressing
discs uniformly. If we perform a band-sum operation on two parallel vertical
discs by a band contained in the 3-ball cobounded by them, then we get
a boundary-parallel disc, which contributes nothing by attaching to other
discs. The band sum of two isotopic (non-separating) discs is necessarily
a separating disc. Therefore, we can assume the disjoint vertical discs to
start with do not contain more than two copies of a non-separating disc
nor two copies of a separating disc. This shows the number of vertical
discs from which a compressing disc is constructed can be bounded by a
constant depending only on the rank of π1(M0) = F . Since we have to get
a disc by band-sums, the graph obtained by regarding the discs as vertices
and the bands as edges must be a tree. Any tree has fewer edges than
vertices. Therefore, we also see that there is a bound on the number of
bands depending only on the rank of F .

Recall that we have a sequence of compressing discs Di such that {∂Di}
converges to µ containing λ. If we can boundary-compress each of Di after
taking a subsequence, we let D1

i be one of the obtained compressing disc.
Since i(∂Di, ∂D

1
i ) = 0, we see that the Hausdorff limit µ1 of ∂D1

i does not
intersect µ transversely, hence does not intersect λ transversely either. This
means that µ1 is also a union of λ and isolated leaves whose ends spiral
around λ. We repeat this operation until compressing discs in the sequence
become boundary-incompressible. As was remarked above, there is a bound
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independent of i for the number of times which we can perform boundary-
compression. Therefore after finite steps, we get a sequence of boundary-
incompressible, vertical compressing discs D′

i such that {∂D′
i} converges to

a geodesic lamination µ′ which is a union of λ and isolated leaves whose
ends spiral around λ.

SinceD′
i is vertical, ∂D

′
i∩S doubly covers a proper arc ai on B. Therefore,

we see that µ′ ∩ S doubly covers a lamination on B which is a Hausdorff
limit of ai. This implies that λ also doubly covers a lamination on B.

�

Now by Lemmata 6.1 and 6.2, we see that if M0 is a twisted I-bundle, its
ending lamination always has to be disc-busting. Theorem 1.2 then implies
that M0 is primitive stable as a representation of a free group.

For a twisted I-bundle M over a non-orientable surface B without bound-
ary, there is similar work by Lee [18]. Note that in this case, π1(M) is not a
free group. She defined an element g ∈ π1(M) is primitive if it can be repre-
sented by a simple closed curve on B and defined the primitive stability of
a representation ρ : π1(M)→PSL(2,C) in [18, pp. 4]. She has shown that a
representation ρ is not primitive stable if and only if there exists a primitive
g such that ρ(g) is a parabolic.
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